2 resultados para calcium channel blocking agent

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Midbrain dopaminergic neurons are endowed with endogenous slow pacemaking properties. In recent years, many different groups have studied the basis for this phenomenon, often with conflicting conclusions. In particular, the role of a slowly-inactivating L-type calcium channel in the depolarizing phase between spikes is controversial, and the analysis of slow oscillatory potential (SOP) recordings during the blockade of sodium channels has led to conflicting conclusions. Based on a minimal model of a dopaminergic neuron, our analysis suggests that the same experimental protocol may lead to drastically different observations in almost identical neurons. For example, complete L-type calcium channel blockade eliminates spontaneous firing or has almost no effect in two neurons differing by less than 1% in their maximal sodium conductance. The same prediction can be reproduced in a state of the art detailed model of a dopaminergic neuron. Some of these predictions are confirmed experimentally using single-cell recordings in brain slices. Our minimal model exhibits SOPs when sodium channels are blocked, these SOPs being uncorrelated with the spiking activity, as has been shown experimentally. We also show that block of a specific conductance (in this case, the SK conductance) can have a different effect on these two oscillatory behaviors (pacemaking and SOPs), despite the fact that they have the same initiating mechanism. These results highlight the fact that computational approaches, besides their well known confirmatory and predictive interests in neurophysiology, may also be useful to resolve apparent discrepancies between experimental results. © 2011 Drion et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper extends the authors' earlier work which adapted robust multiplexed MPC for application to distributed control of multi-agent systems with non-interacting dynamics and coupled constraint sets in the presence of persistent unknown, but bounded disturbances. Specifically, we propose exploiting the single agent update nature of the multiplexed approach, and fix the update sequence to enable input move-blocking and increased discretisation rates. This permits a higher rate of individual policy update to be achieved, whilst incurring no additional computational cost in the corresponding optimal control problems to be solved. A disturbance feedback policy is included between updates to facilitate finding feasible solutions. The new formulation inherits the property of rapid response to disturbances from multiplexing the control and numerical results show that fixing the update sequence does not incur any loss in performance. © 2011 IFAC.