12 resultados para bypass fat
em Cambridge University Engineering Department Publications Database
Resumo:
This paper describes the development of an automated design optimization system that makes use of a high fidelity Reynolds-Averaged CFD analysis procedure to minimize the fan forcing and fan BOGV (bypass outlet guide vane) losses simultaneously taking into the account the down-stream pylon and RDF (radial drive fairing) distortions. The design space consists of the OGV's stagger angle, trailing-edge recambering, axial and circumferential positions leading to a variable pitch optimum design. An advanced optimization system called SOFT (Smart Optimisation for Turbomachinery) was used to integrate a number of pre-processor, simulation and in-house grid generation codes and postprocessor programs. A number of multi-objective, multi-point optimiztion were carried out by SOFT on a cluster of workstations and are reported herein.
Resumo:
In this paper we examine triggering in a simple linearly-stable thermoacoustic system using techniques from flow instability and optimal control. Firstly, for a noiseless system, we find the initial states that have highest energy growth over given times and from given energies. Secondly, by varying the initial energy, we find the lowest energy that just triggers to a stable periodic solution. We show that the corresponding initial state grows first towards an unstable periodic solution and, from there, to the stable periodic solution. This exploits linear transient growth, which arises due to nonnormality in the governing equations and is directly analogous to bypass transition to turbulence. Thirdly, we introduce noise that has similar spectral characteristics to this initial state. We show that, when triggering from low noise levels, the system grows to high amplitude self-sustained oscillations by first growing towards the unstable periodic solution of the noiseless system. This helps to explain the experimental observation that linearly-stable systems can trigger to self-sustained oscillations even with low background noise. © 2010 by University of Cambridge. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
An optimization process has been used to design an ultra-low count fan outlet guide vane with an unconventional leading edge profile to reduce the interaction noise. Computational fluid dynamics has been used to predict the aerodynamic and acoustic performance of the stator vane. The final stator design has been built and tested in a representative fan stage rig to determine its tone noise characteristics. The stator vane is found to give significant tone noise reduction at the fundamental blade passing frequency at cut-back in line with design expectations. Detailed comparisons of predicted circumferential and radial modes levels against measured mode detection data are also presented. A good agreement was found between numerical predictions and experimental data.