207 resultados para broadband optical polarisors

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strongly enhanced light emission at wavelengths between 1.3 and 1.6 μm is reported at room temperature in silicon photonic crystal (PhC) nanocavities with optimized out-coupling efficiency. Sharp peaks corresponding to the resonant modes of PhC nanocavities dominate the broad sub-bandgap emission from optically active defects in the crystalline Si membrane. We measure a 300-fold enhancement of the emission from the PhC nanocavity due to a combination of far-field enhancement and the Purcell effect. The cavity enhanced emission has a very weak temperature dependence, namely less than a factor of 2 reduction between 10 K and room temperature, which makes this approach suitable for the realization of efficient light sources as well as providing a quick and easy tool for the broadband optical characterization of silicon-on-insulator nanostructures. © 2011 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate an on-chip all-optical broadband modulation of light in submicron silicon waveguide based on linear free carriers' absorption using side coupling configuration of a pump signal. © 2010 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An 80 GSPS photonic ADC system is demonstrated, using broadband MLL and dispersive fibre to form a continuous waveform with time-wavelength mapping, and AWG to channelise. Tests are carried out for RF signals up to 10GHz. © 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Materials with nonlinear optical properties are much sought after for ultrafast photonic applications. Mode-locked lasers can generate ultrafast pulses using saturable absorbers[1]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs). However, narrow tuning range (tens of nm), complex fabrication and packaging limit their applications[2]. Single wall nanotubes (SWNTs) and graphene offer simpler and cost-effective solutions[1]. Broadband operation can be achieved in SWNTs using a distribution of tube diameters[1,3], or by using graphene[4-8], due to the gapless linear dispersion of Dirac electrons[8,9]. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract (40-Word Limit): A novel method for sending MIMO wireless signals to remote antenna units over a single multimode fibre is proposed. MIMO streams are sent via different fibre modes using mode division multiplexing. Combined channel measurements of 2km MMF and a typical indoor radio environment show in principle a 2x2 MIMO link at carrier frequencies up to 6GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for sending MIMO wireless signals to remote antenna units over a single multimode fibre is proposed. MIMO streams are sent via different fibre modes using mode division multiplexing. Combined channel measurements of 2km MMF and a typical indoor radio environment show in principle a 2×2 MIMO link at carrier frequencies up to 6GHz. © 2012 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An 80 GSPS photonic ADC system is demonstrated, using broadband MLL and dispersive fibre to form a continuous waveform with time-wavelength mapping, and AWG to channelise. Tests are carried out for RF signals up to 10GHz. © 2005 Optical Society of America.