5 resultados para block model
em Cambridge University Engineering Department Publications Database
Resumo:
Power allocation is studied for fixed-rate transmission over block-fading channels with arbitrary continuous fading distributions and perfect transmitter and receiver channel state information. Both short- and long-term power constraints for arbitrary input distributions are considered. Optimal power allocation schemes are shown to be direct applications of previous results in the literature. It is shown that the short- and long-term outage exponents for arbitrary input distributions are related through a simple formula. The formula is useful to predict when the delay-limited capacity is positive. Furthermore, this characterization is useful for the design of efficient coding schemes for this relevant channel model. © 2010 IEEE.
Resumo:
This paper describes a new approach to model the forces on a tread block for a free-rolling tyre in contact with a rough road. A theoretical analysis based on realistic tread mechanical properties and road roughness is presented, indicating partial contact between a tread block and a rough road. Hence an asperity-scale indentation model is developed using a semi-empirical formulation, taking into account both the rubber viscoelasticity and the tread block geometry. The model aims to capture the essential details of the contact at the simplest level, to make it suitable as part of a time-domain dynamic analysis of the coupled tyre-road system. The indentation model is found to have a good correlation with the finite element (FE) predictions and is validated against experimental results using a rolling contact rig. When coupled to a deformed tyre belt profile, the indentation model predicts normal and tangential force histories inside the tyre contact patch that show good agreement with FE predictions. © 2012 Elsevier B.V..
Resumo:
We describe new results on the vibrations of rolling tyres, aimed at noise prediction for tyres of given design on a smooth road surface. This new approach incorporates our existing models, of smooth road-tyre interaction and belt vibration but includes additional features that are required for real tyre patterns. To this end, the model allows variable tread block size and grooves along the belt circumference; the density and angle of these grooves may also vary laterally. The key innovation is to treat the tyre belt as a laterally stacked series of rings, each of which is equipped with a set of viscoelastic springs around its circumference. It is shown how to use this construction to mimic the details of actual tyre patterns and, in conjunction with existing models, predict belt vibrations. The construction is applied to develop a ring discretisation for a real tyre that shows strong lateral variations. It is shown that the vibration amplitude is concentrated on a set of parallel lines in frequency-wavenumber space and that the tread pattern dictates the occurrence and spacing of these lines. Linkage to a boundary element calculation then allows quantification of the influence of tread parameters on radiated noise. Keywords: Vibration, tread pattern, tyre noise. Copyright © (2011) by the Institute of Noise Control Engineering.