6 resultados para biometria ocular

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motor system responds to perturbations with reflexes, such as the vestibulo-ocular reflex or stretch reflex, whose gains adapt in response to novel and fixed changes in the environment, such as magnifying spectacles or standing on a tilting platform. Here we demonstrate a reflex response to shifts in the hand's visual location during reaching, which occurs before the onset of voluntary reaction time, and investigate how its magnitude depends on statistical properties of the environment. We examine the change in reflex response to two different distributions of visuomotor discrepancies, both of which have zero mean and equal variance across trials. Critically one distribution is task relevant and the other task irrelevant. The task-relevant discrepancies are maintained to the end of the movement, whereas the task-irrelevant discrepancies are transient such that no discrepancy exists at the end of the movement. The reflex magnitude was assessed using identical probe trials under both distributions. We find opposite directions of adaptation of the reflex response under these two distributions, with increased reflex magnitudes for task-relevant variability and decreased reflex magnitudes for task-irrelevant variability. This demonstrates modulation of reflex magnitudes in the absence of a fixed change in the environment, and shows that reflexes are sensitive to the statistics of tasks with modulation depending on whether the variability is task relevant or task irrelevant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review will focus on the possibility that the cerebellum contains an internal model or models of the motor apparatus. Inverse internal models can provide the neural command necessary to achieve some desired trajectory. First, we review the necessity of such a model and the evidence, based on the ocular following response, that inverse models are found within the cerebellar circuitry. Forward internal models predict the consequences of actions and can be used to overcome time delays associated with feedback control. Secondly, we review the evidence that the cerebellum generates predictions using such a forward model. Finally, we review a computational model that includes multiple paired forward and inverse models and show how such an arrangement can be advantageous for motor learning and control.