168 resultados para bio-fuel
em Cambridge University Engineering Department Publications Database
Resumo:
Growing concerns regarding fluctuating fuel costs and pollution targets for gas emissions, have led the aviation industry to seek alternative technologies to reduce its dependency on crude oil, and its net emissions. Recently blends of bio-fuel with kerosine, have become an alternative solution as they offer "greener" aircraft and reduce demand on crude oil. Interestingly, this technique is able to be implemented in current aircraft as it does not require any modification to the engine. Therefore, the present study investigates the effect of blends of bio-synthetic paraffinic kerosine with Jet-A in a civil aircraft engine, focusing on its performance and exhaust emissions. Two bio-fuels are considered: Jatropha Bio-synthetic Paraffinic Kerosine (JSPK) and Camelina Bio-synthetic Paraffinic Kerosine (CSPK); there are evaluated as pure fuels, and as 10% and 50% blend with Jet-A. Results obtained show improvement in thrust, fuel flow and SFC as composition of bio-fuel in the blend increases. At design point condition, results on engine emissions show reduction in NO x, and CO, but increases of CO is observed at fixed fuel condition, as the composition of bio-fuel in the mixture increases. Copyright © 2012 by ASME.
Resumo:
Rich combustion of n-heptane, diesel oil, jet A-1 kerosene, and bio-diesel (rapeseed-oil methyl ester) were studied to produce hydrogen enriched gas, ready for the cleanup stages for fuel cell applications. n-heptane was successfully reformed up to an equivalence ratio of 3:1, reaching a conversion efficiency up to 83% for a packed bed of alumina bead burner. Diesel, kerosene and bio-diesel were reformed to synthesis gas with conversion efficiency up to 65%. At equivalence ratio of 2:1 and P=7 kw, stability, low HC formation, high conversion efficiency, and low soot emission were achieved. A common synthesis gas composition around this condition was 15 and 13% H2, 15 and 17% CO, and 4 and 4.5% CO2 for n-heptane and diesel, jet A-1 and bio-diesel, respectively, for burner A. This is an abstract of a paper presented at the 2010 Spring National Meeting (San Antonio, TX 3/21-25/2010).
Resumo:
Tetrahedral amorphous carbon (ta-C) thin films are a promising material for use as biocompatible interfaces in applications such as in-vivo biosensors. However, the functionalization of ta-C film surface, which is a pre-requisite for biosensors, remains a big challenge due to its chemical inertness. We have investigated the bio-functionalization of ta-C films fabricated under specific physical conditions through the covalent attachment of functional biomolecular probes of peptide nucleic acid (PNA) to ta-C films, and the effect of fabrication conditions on the bio-functionalization. The study showed that the functional bimolecular probes such as protected long-chain ω-unsaturated amine (TFAAD) can be covalently attached to the ta-C surface through a well-defined structure. With the given fabrication process, electrochemical methods can be applied to the detection of biomolecular interaction, which establishes the basis for the development of stable, label-free biosensors. © 2011 Elsevier B.V. All rights reserved.