8 resultados para benchmarks
em Cambridge University Engineering Department Publications Database
Resumo:
This paper details the design and enhanced electrical transduction of a bulk acoustic mode resonator fabricated in a commercial foundry MEMS process utilizing 2.5 μm gaps. The I-V characteristics of electrically addressed silicon resonators are often dominated by capacitive parasitics, inherent to hybrid technologies. This paper benchmarks a variety of drive and detection principles for electrostatically driven square-extensional mode resonators operating in air via analytical models accompanied by measurements of fabricated devices with the primary aim of enhancing the ratio of the motional to feedthrough current at nominal operating voltages. In view of ultimately enhancing the motional to feedthrough current ratio, a new detection technique that combines second harmonic capacitive actuation and piezoresistive detection is presented herein. This new method is shown to outperform previously reported methods utilizing voltages as low as ±3 V in air, providing a promising solution for low voltage CMOS-MEMS integration. To elucidate the basis of this improvement in signal output from measured devices, an approximate analytical model for piezoresistive sensing specific to the resonator topology reported here is also developed and presented. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Electrically addressed silicon bulk acoustic wave microresonators offer high Q solutions for applications in sensing and signal processing. However, the electrically transduced motional signal is often swamped by parasitic feedthrough in hybrid technologies. With the aim of enhancing the ratio of the motional to feedthrough current at nominal operating voltages, this paper benchmarks a variety of drive and detection principles for electrostatically driven square-extensional mode resonators operating in air and in a foundry MEMS process utilizing 2μm gaps. A new detection technique, combining second harmonic capacitive actuation and piezoresistive detection, outperforms previously reported methods utilizing voltages as low as ± 3V in air providing a promising solution for low voltage CMOS-MEMS integration. ©2009 IEEE.
Resumo:
Numerical integration is a key component of many problems in scientific computing, statistical modelling, and machine learning. Bayesian Quadrature is a modelbased method for numerical integration which, relative to standard Monte Carlo methods, offers increased sample efficiency and a more robust estimate of the uncertainty in the estimated integral. We propose a novel Bayesian Quadrature approach for numerical integration when the integrand is non-negative, such as the case of computing the marginal likelihood, predictive distribution, or normalising constant of a probabilistic model. Our approach approximately marginalises the quadrature model's hyperparameters in closed form, and introduces an active learning scheme to optimally select function evaluations, as opposed to using Monte Carlo samples. We demonstrate our method on both a number of synthetic benchmarks and a real scientific problem from astronomy.
Resumo:
This paper addresses the problem of low-rank distance matrix completion. This problem amounts to recover the missing entries of a distance matrix when the dimension of the data embedding space is possibly unknown but small compared to the number of considered data points. The focus is on high-dimensional problems. We recast the considered problem into an optimization problem over the set of low-rank positive semidefinite matrices and propose two efficient algorithms for low-rank distance matrix completion. In addition, we propose a strategy to determine the dimension of the embedding space. The resulting algorithms scale to high-dimensional problems and monotonically converge to a global solution of the problem. Finally, numerical experiments illustrate the good performance of the proposed algorithms on benchmarks. © 2011 IEEE.
Resumo:
In this paper, we tackle the problem of learning a linear regression model whose parameter is a fixed-rank matrix. We study the Riemannian manifold geometry of the set of fixed-rank matrices and develop efficient line-search algorithms. The proposed algorithms have many applications, scale to high-dimensional problems, enjoy local convergence properties and confer a geometric basis to recent contributions on learning fixed-rank matrices. Numerical experiments on benchmarks suggest that the proposed algorithms compete with the state-of-the-art, and that manifold optimization offers a versatile framework for the design of rank-constrained machine learning algorithms. Copyright 2011 by the author(s)/owner(s).
Resumo:
The paper addresses the problem of learning a regression model parameterized by a fixed-rank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixedrank positive semidefinite matrices. In contrast with previous contributions in the literature, no restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain a linear complexity in the problem size and enjoy important invariance properties. We apply the proposed algorithms to the problem of learning a distance function parameterized by a positive semidefinite matrix. Good performance is observed on classical benchmarks. © 2011 Gilles Meyer, Silvere Bonnabel and Rodolphe Sepulchre.
Resumo:
We show the feasibility of using quantum Monte Carlo (QMC) to compute benchmark energies for configuration samples of thermal-equilibrium water clusters and the bulk liquid containing up to 64 molecules. Evidence that the accuracy of these benchmarks approaches that of basis-set converged coupled-cluster calculations is noted. We illustrate the usefulness of the benchmarks by using them to analyze the errors of the popular BLYP approximation of density functional theory (DFT). The results indicate the possibility of using QMC as a routine tool for analyzing DFT errors for non-covalent bonding in many types of condensed-phase molecular system.