12 resultados para auxiliary station
em Cambridge University Engineering Department Publications Database
Resumo:
Optimal Bayesian multi-target filtering is in general computationally impractical owing to the high dimensionality of the multi-target state. The Probability Hypothesis Density (PHD) filter propagates the first moment of the multi-target posterior distribution. While this reduces the dimensionality of the problem, the PHD filter still involves intractable integrals in many cases of interest. Several authors have proposed Sequential Monte Carlo (SMC) implementations of the PHD filter. However, these implementations are the equivalent of the Bootstrap Particle Filter, and the latter is well known to be inefficient. Drawing on ideas from the Auxiliary Particle Filter (APF), a SMC implementation of the PHD filter which employs auxiliary variables to enhance its efficiency was proposed by Whiteley et. al. Numerical examples were presented for two scenarios, including a challenging nonlinear observation model, to support the claim. This paper studies the theoretical properties of this auxiliary particle implementation. $\mathbb{L}_p$ error bounds are established from which almost sure convergence follows.
Resumo:
Optimal Bayesian multi-target filtering is, in general, computationally impractical owing to the high dimensionality of the multi-target state. The Probability Hypothesis Density (PHD) filter propagates the first moment of the multi-target posterior distribution. While this reduces the dimensionality of the problem, the PHD filter still involves intractable integrals in many cases of interest. Several authors have proposed Sequential Monte Carlo (SMC) implementations of the PHD filter. However, these implementations are the equivalent of the Bootstrap Particle Filter, and the latter is well known to be inefficient. Drawing on ideas from the Auxiliary Particle Filter (APF), we present a SMC implementation of the PHD filter which employs auxiliary variables to enhance its efficiency. Numerical examples are presented for two scenarios, including a challenging nonlinear observation model.
Resumo:
A novel CMOS-compatible, heavily doped drift auxiliary cathode lateral insulated gate transistor (HDD-ACLIGT) structure is analyzed using two-dimensional device simulation techniques. Simulation results indicate that low on-resistance and a fast turn-off time of less than 50 ns can be achieved by incorporating an additional n+ region which is self-aligned to the gate between the p+ auxiliary cathode and the p well, together with an extended p buried layer in an anode-shorted modified lateral insulated gate transistor (MLIGT) structure. The on-state and its transient performance are analyzed in detail. The on-state performances of the HDD-ACLIGT and the MLIGT are compared and discussed. The results indicate that the HDD-ACLIGT structure is well suited for HVICs. The device is also well suited for integration with self-aligned digital CMOS.