22 resultados para atom

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different FIB-based sample preparation methods for atom probe analysis of transistors have been proposed and discussed. A special procedure, involving device deprocessing, has been used to analyze by APT a sub-30 nm transistor extracted from a SRAM device. The analysis provides three dimensional compositions of Ni-silicide contact, metal gate and high-k oxide of the transistor gate. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ni silicide formed at low temperature on Si nanowire has been analyzed by atom probe tomography (APT) thanks to a special technique for sample preparation. A method of preparation has been developed using the focused ion beam (FIB) for the APT analysis of nanowires (NWs). This method allow for the measurement of the radial distribution when a NW is cut, buried in a protective metal matrix, and finally mounted on the APT support post. This method was used for phosphorous doped Si NWs with or without a silicide shell, and allows obtaining the concentration and distribution of chemical elements in three-dimensions (3D) in the radial direction of the NWs. The distribution of atoms in the NWs has been measured including dopants and Au contamination. These measurements show that δ-Ni2Si phase is formed on Si NW, Au is found as cluster at the Ni/δ-Ni2Si interface and P is segregated at the δ-Ni2Si/ Si NW interface. The results obtained on NWs after silicidation were compared with the silicide on the Si substrate, showing that the same silicide phase δ-Ni2Si formed in both cases (NWs and substrate). © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In microelectronics, the increase in complexity and the reduction of devices dimensions make essential the development of new characterization tools and methodologies. Indeed advanced characterization methods with very high spatial resolution are needed to analyze the redistribution at the nanoscale in devices and interconnections. The atom probe tomography has become an essential analysis to study materials at the nanometer scale. This instrument is the only analytical microscope capable to produce 3D maps of the distribution of the chemical species with an atomic resolution inside a material. This technique has benefit from several instrumental improvements during last years. In particular, the use of laser for the analysis of semiconductors and insulating materials offers new perspectives for characterization. The capability of APT to map out elements at the atomic scale with high sensitivity in devices meets the characterization requirements of semiconductor devices such as the determination of elemental distributions for each device region. In this paper, several examples will show how APT can be used to characterize and understand materials and process for advanced metallization. The possibilities and performances of APT (chemical analysis of all the elements, atomic resolution, planes determination, crystallographic information...) will be described as well as some of its limitations (sample preparation, complex evaporation, detection limit, ...). The examples illustrate different aspect of metallization: dopant profiling and clustering, metallic impurities segregation on dislocation, silicide formation and alloying, high K/metal gate optimization, SiGe quantum dots, as well as analysis of transistors and nanowires. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doping in hydrogenated amorphous silicon occurs by a process of an ionised donor atom partially compensated by a charged dangling bond. The total energies of various dopant and dopant/bonding combinations are calculated for tetrahedral amorphous carbon. It is found that charged dangling bonds are less favoured because of the stronger Coulombic repulsion in ta-C. Instead the dopants can be compensated by weak bond states in the lower gap associated with odd-membered π-rings or odd-numbered π-chains. The effect is that the doping efficiency is low but there are not charged midgap recombination centres, to reduce photoconductivity or photoluminescence with doping, as occurs in a-Si:H.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doping in hydrogenated amorphous silicon occurs by a process of an ionized donor atom partially compensated by a charged dangling bond. The total energies of various dopant and dopant/bonding combinations are calculated for tetrahedral amorphous carbon. It is found that charged dangling bonds are less favored because of the stronger Coulombic repulsion in ta-C. Instead the dopants can be compensated by weak bond states in the lower gap associated with odd-membered π-rings or odd-numbered π-chains. The effect is that the doping efficiency is low but there are not charged midgap recombination centres, to reduce photoconductivity or photoluminescence with doping, as occurs in a-Si:H.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin film transistors (TFTs) utilizing an hydrogenated amorphous silicon (a-Si:H) channel layer exhibit a shift in the threshold voltage with time under the application of a gate bias voltage due to the creation of metastable defects. These defects are removed by annealing the device with zero gate bias applied. The defect removal process can be characterized by a thermalization energy which is, in turn, dependent upon an attempt-to-escape frequency for defect removal. The threshold voltage of both hydrogenated and deuterated amorphous silicon (a-Si:D) TFTs has been measured as a function of annealing time and temperature. Using a molecular dynamics simulation of hydrogen and deuterium in a silicon network in the H2 * configuration, it is shown that the experimental results are consistent with an attempt-to-escape frequency of (4.4 ± 0.3) × 1013 Hz and (5.7 ± 0.3) × 1013 Hz for a-Si:H and a-Si:D respectively which is attributed to the oscillation of the Si-H and Si-D bonds. Using this approach, it becomes possible to describe defect removal in hydrogenated and deuterated material by the thermalization energies of (1.552 ± 0.003) eV and (1.559 ± 0.003) eV respectively. This correlates with the energy per atom of the Si-H and Si-D bonds. © 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon nanoparticles between 2.5 nm and 30 nm in diameter were functionalized by means of photoassisted hydrosilylation reactions in the aerosol phase with terminal alkenes of varying chain length. Using infrared spectroscopy and nuclear magnetic resonance, the chemical composition of the alkyl layer was determined for each combination of particle size and alkyl chain length. The spectroscopic techniques were used to determine that smaller particles functionalized with short chains in the aerosol phase tend to attach to the interior (β) alkenyl carbon atom, whereas particles >10 nm in diameter exhibit attachment primarily with the exterior (α) alkenyl carbon atom, regardless of chain length. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preferential species diffusion is known to have important effects on local flame structure in turbulent premixed flames, and differential diffusion of heat and mass can have significant effects on both local flame structure and global flame parameters, such as turbulent flame speed. However, models for turbulent premixed combustion normally assume that atomic mass fractions are conserved from reactants to fully burnt products. Experiments reported here indicate that this basic assumption may be incorrect for an important class of turbulent flames. Measurements of major species and temperature in the near field of turbulent, bluff-body stabilized, lean premixed methane-air flames (Le=0.98) reveal significant departures from expected conditional mean compositional structure in the combustion products as well as within the flame. Net increases exceeding 10% in the equivalence ratio and the carbon-to-hydrogen atom ratio are observed across the turbulent flame brush. Corresponding measurements across an unstrained laminar flame at similar equivalence ratio are in close agreement with calculations performed using Chemkin with the GRI 3.0 mechanism and multi-component transport, confirming accuracy of experimental techniques. Results suggest that the large effects observed in the turbulent bluff-body burner are cause by preferential transport of H 2 and H 2O through the preheat zone ahead of CO 2 and CO, followed by convective transport downstream and away from the local flame brush. This preferential transport effect increases with increasing velocity of reactants past the bluff body and is apparently amplified by the presence of a strong recirculation zone where excess CO 2 is accumulated. © 2011 The Combustion Institute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluorine redistribution during partial solid-phase-epitaxial-regrowth at 650°C of a preamorphized Si substrate implanted by F was investigated by atom probe tomography (APT), transmission electron microscopy, and secondary ions mass spectrometry. Three-dimensional spatial distribution of F obtained by APT provides a direct observation of F-rich clusters with a diameter of less than 1.5 nm. Density variation compatible with cavities and F-rich molecular ions in correspondence of clusters are in accordance with cavities filled by SiF 4 molecules. Their presence only in crystalline Si while they are not revealed by statistical analysis in amorphous suggests that they form at the amorphous/crystal interface. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three-dimensional spatial distribution of Al in the high-k metal gates of metal-oxide-semiconductor field-effect-transistors is measured by atom probe tomography. Chemical distribution is correlated with the transistor voltage threshold (VTH) shift generated by the introduction of a metallic Al layer in the metal gate. After a 1050 °C annealing, it is shown that a 2-Å thick Al layer completely diffuses into oxide layers, while a positive VTH shift is measured. On the contrary, for thicker Al layers, Al precipitation in the metal gate stack is observed and the VTH shift becomes negative. © 2012 American Institute of Physics.