61 resultados para asymmetrical magnetization

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the fabrication and operation of a carbon nanotube (CNT) based Schottky diode by using a Pd contact (high-work-function metal) and an Al contact (low-work-function metal) at the two ends of a single-wall CNT. We show that it is possible to tune the rectification current-voltage (I-V) characteristics of the CNT through the use of a back gate. In contrast to standard back gate field-effect transistors (FET) using same-metal source drain contacts, the asymmetrically contacted CNT operates as a directionally dependent CNT FET when gated. While measuring at source-drain reverse bias, the device displays semiconducting characteristics whereas at forward bias, the device is nonsemiconducting. © 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As we known, the high temperature (77 K) superconducting (HTS) motor is considered as a competitive electrical machine by more and more people. There have been various of designs for HTS motor in the world. However, most of them focus on HTS tapes rather than bulks. Therefore, in order to investigate possibility of HTS bulks on motor application, a HTS magnet synchronous motor which has 75 pieces of YBCO bulks surface mounted on the rotor has been designed and developed in Cambridge University. After pulsed field magnetization (PFM) process, the rotor can trap a 4 poles magnetic field of 375 mT. The magnetized rotor can provide a maximum torque of 49.5 Nm and a maximum power of 7.8 kW at 1500 rpm. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature superconductors, such as melt-processed YBCO bulks, have great advantages on trapping strong magnetic fields in liquid nitrogen. To enable them to function well, there are some traditional ways of magnetizing them, in which the YBCO bulks are magnetized instantly under a very strong source of magnetic field. These ways would consume great amounts of power to make the superconductors trap as much field as possible. Thermally Actuated Magnetization (TAM) Flux pump has been proved a perfect substitution for these expensive methods by using a relatively small magnet as the source. In this way, the field is developed gradually over many pulses. Unlike conventional flux pumping ways, the TAM does not drive the superconductor normal during the process of magnetization. In former experiments for the flux pump, some fundamental tests were done. In this paper, the experiment system is advanced to a new level with better temperature control to the thermal waves moving in the Gadolinium and with less air gap for the flux lines sweeping through the superconductor. This experiment system F leads to a stronger accumulation of the magnetic field trapped in the YBCO bulk. We also tried different ways of sending the thermal waves and found out that the pumping effect is closely related to the power of the heaters and the on and off time. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the magnetization reversal process of a single chain of identical nanomagnetic dots fabricated from 30 nm thick Ni 80Fe20. The structures consist of two 5 μm wide support wires bridged with a single chain of identical dots of diameter δ in the range 100-250 nm. For fields applied perpendicular to the single chain, we observed an unusual size dependent hysteretic behavior in the magnetoresistance curve at high field. This is due to the magnetostatic interaction arising from the proximity of the magnetic charges. We are able to deduce from a simple micromagnetic simulation that the reversal process in the chain of dots with δ=100nm is mediated by a collective process of nearly coherent spin rotation. The magnetotransport measurements along the chain reveal a complex magnetization reversal process in the chain of nanomagnets. © 2002 American Institute of Physics.