12 resultados para artificial surface cracks

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A model has been developed to predict the erosive wear behaviour of elastomers under conditions of glancing impact by small hard particles. Previous work has shown the erosive wear mechanism of elastomers under these conditions to be similar in nature to that of abrasive wear by a sharp blade. The model presented here was developed from the model of Southern and Thomas for sliding abrasion, by combining their treatment of the growth of surface cracks with a model for particle impact in which the force - displacement relationship for an idealized flat-ended punch on a semi-infinite elastic solid was assumed. In this way an expression for the erosive wear rate was developed, and compared with experimental measurements of wear rate for natural rubber, styrene - butadiene rubber and a highly crosslinked polybutadiene rubber. Good qualitative agreement was found between the predictions of the model and the experimental measurements. The variation of erosion rate with impact velocity, impact angle, particle size, elastic modulus of the material, coefficient of friction and fatigue properties were all well accounted for. Quantitative agreement was less good, and the effects of erosive particle shape could not be accounted for. The reasons for these discrepancies are discussed. © 1992 IOP Publishing Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. Examples include surface cracks detection, assessment of fire-damaged mortar, fatigue evaluation of asphalt mixes, aggregate shape measurements, velocimentry, vehicles detection, pore size distribution in geotextiles, damage detection and others. This capability is a product of the technological breakthroughs in the area of Image and Video Processing that has allowed for the development of a large number of digital imaging applications in all industries ranging from the well established medical diagnostic tools (magnetic resonance imaging, spectroscopy and nuclear medical imaging) to image searching mechanisms (image matching, content based image retrieval). Content based image retrieval techniques can also assist in the automated recognition of materials in construction site images and thus enable the development of reliable methods for image classification and retrieval. The amount of original imaging information produced yearly in the construction industry during the last decade has experienced a tremendous growth. Digital cameras and image databases are gradually replacing traditional photography while owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks. However, construction companies tend to store images without following any standardized indexing protocols, thus making the manual searching and retrieval a tedious and time-consuming effort. Alternatively, material and object identification techniques can be used for the development of automated, content based, construction site image retrieval methodology. These methods can utilize automatic material or object based indexing to remove the user from the time-consuming and tedious manual classification process. In this paper, a novel material identification methodology is presented. This method utilizes content based image retrieval concepts to match known material samples with material clusters within the image content. The results demonstrate the suitability of this methodology for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a magneto-optical (MO) technique, magnetic field distributions have been measured in a melt-textured YBa 2Cu 3O 7-x bulk superconductor, joined to form an artificial grain boundary (GB), in an external magnetic field perpendicular to the sample surface. The magnetic field at a weak section of the GB shows different values between the field increasing up to 150mT and decreasing down to 0T after zero-field-cooling. Namely, the magnetic field in increasing field is higher than that in decreasing field, even in the same external field. This result supports a model in which such differences in magnetic field at the weak-link GB give rise to the hysteresis behavior in the field dependence of transport critical current density in polycrystalline samples. The field distributions across a well-joined region of the GB behave similarly to the adjoining bulk material and this result indicates the possibility of creating useful artifacts provided that the strongly coupled sections can be reproduced on a larger scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manually inspecting concrete surface defects (e.g., cracks and air pockets) is not always reliable. Also, it is labor-intensive. In order to overcome these limitations, automated inspection using image processing techniques was proposed. However, the current work can only detect defects in an image without the ability of evaluating them. This paper presents a novel approach for automatically assessing the impact of two common surface defects (i.e., air pockets and discoloration). These two defects are first located using the developed detection methods. Their attributes, such as the number of air pockets and the area of discoloration regions, are then retrieved to calculate defects’ visual impact ratios (VIRs). The appropriate threshold values for these VIRs are selected through a manual rating survey. This way, for a given concrete surface image, its quality in terms of air pockets and discoloration can be automatically measured by judging whether their VIRs are below the threshold values or not. The method presented in this paper was implemented in C++ and a database of concrete surface images was tested to validate its performance. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CO.1943-7862.0000126?journalCode=jcemd4

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present a flexible Electrostatic Tactile (ET) surface/display realized by using new emerging material graphene. The graphene is transparent conductor which successfully replaces previous solution based on indium-thin oxide (ITO) and delivers more reliable solution for flexible and bendable displays. The electrostatic tactile surface is capable of delivering programmable, location specific tactile textures. The ET device has an area of 25 cm 2, and consists of 130 μm thin optically transparent (>76%) and mechanically flexible structure overlaid unobtrusively on top of a display. The ET system exploits electro vibration phenomena to enable on-demand control of the frictional force between the user's fingertip and the device surface. The ET device is integrated through a controller on a mobile display platform to generate fully programmable range of stimulating signals. The ET haptic feedback is formed in accordance with the visual information displayed underneath, with the magnitude and pattern of the frictional force correlated with both the images and the coordinates of the actual touch in real time forming virtual textures on the display surface (haptic virtual silhouette). To quantify rate of change in friction force we performed a dynamic friction coefficient measurement with a system involving an artificial finger mimicking the actual touch. During operation, the dynamic friction between the ET surface and an artificial finger stimulation increases by 26% when the load is 0.8 N and by 24% when the load is 1 N. © 2012 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical model is developed to analyse the interaction of artificial cilia with the surrounding fluid in a three-dimensional setting in the limit of vanishing fluid inertia forces. The cilia are modelled using finite shell elements and the fluid is modelled using a boundary element approach. The coupling between both models is performed by imposing no-slip boundary conditions on the surface of the cilia. The performance of the model is verified using various reference problems available in the literature. The model is used to simulate the fluid flow due to magnetically actuated artificial cilia. The results show that narrow and closely spaced cilia create the largest flow, that metachronal waves along the width of the cilia create a significant flow in the direction of the cilia width and that the recovery stroke in the case of the out-of-plane actuation of the cilia strongly depends on the cilia width. © 2012 Cambridge University Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly-ε-caprolactone (PCL) is a biodegradable and biocompatible polymer used in tissue engineering for various clinical applications. Schwann cells (SCs) play an important role in nerve regeneration and repair. SCs attach and proliferate on PCL films but cellular responses are weak due to the hydrophobicity and neutrality of PCL. In this study, PCL films were hydrolysed and aminolysed to modify the surface with different functional groups and improve hydrophilicity. Hydrolysed films showed a significant increase in hydrophilicity while maintaining surface topography. A significant decrease in mechanical properties was also observed in the case of aminolysis. In vitro tests with Schwann cells (SCs) were performed to assess film biocompatibility. A short-time experiment showed improved cell attachment on modified films, in particular when amino groups were present on the material surface. Cell proliferation significantly increased when both treatments were performed, indicating that surface treatments are necessary for SC response. It was also demonstrated that cell morphology was influenced by physico-chemical surface properties. PCL can be used to make artificial conduits and chemical modification of the inner lumen improves biocompatibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trapped magnetic field is examined in bulk high-temperature superconductors that are artificially drilled along their c-axis. The influence of the hole pattern on the magnetization is studied and compared by means of numerical models and Hall probe mapping techniques. To this aim, we consider two bulk YBCO samples with a rectangular cross-section that are drilled each by six holes arranged either on a rectangular lattice (sample I) or on a centered rectangular lattice (sample II). For the numerical analysis, three different models are considered for calculating the trapped flux: (i), a two-dimensional (2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D finite-element model neglecting demagnetizing effects but incorporating magnetic relaxation in the form of an E-J power law, and, (iii), a 3D finite element analysis that takes into account both the finite height of the sample and flux creep effects. For the experimental analysis, the trapped magnetic flux density is measured above the sample surface by Hall probe mapping performed before and after the drilling process. The maximum trapped flux density in the drilled samples is found to be smaller than that in the plain samples. The smallest magnetization drop is found for sample II, with the centered rectangular lattice. This result is confirmed by the numerical models. In each sample, the relative drops that are calculated independently with the three different models are in good agreement. As observed experimentally, the magnetization drop calculated in the sample II is the smallest one and its relative value is comparable to the measured one. By contrast, the measured magnetization drop in sample (1) is much larger than that predicted by the simulations, most likely because of a change of the microstructure during the drilling process.