17 resultados para arsenate tolerance
em Cambridge University Engineering Department Publications Database
Resumo:
This paper introduces the notion of M-step robust fault tolerance for discrete-time systems where finite-time completion of a control manoeuvre is desired. It considers a scenario with two distinct objectives; a primary and secondary target are specified as sets to be reached in finite-time, whilst satisfying operating constraints on the states and inputs. The primary target is switched to the secondary target when a fault affects the system. As it is unknown when or if the fault will occur, the trajectory to the primary target is constrained to ensure reachability of the secondary target within M steps. A variable-horizon linear MPC formulation is developed to illustrate the concept. The formulation is then extended to provide robustness to bounded disturbances by use of tightened constraints. Simulations demonstrate the efficacy of the controller formulation on a double-integrator model. © 2011 IFAC.
Resumo:
This paper investigates the effects of design parameters, such as cladding and coolant material choices, and operational phenomena, such as creep and fission product decay heat, on the tolerance of Accelerator Driven Subcritical Reactor (ADSR) fuel pin cladding to beam interruptions. This work aims to provide a greater understanding of the integration between accelerator and nuclear reactor technologies in ADSRs. The results show that an upper limit on cladding operating temperature of 550 °C is appropriate, as higher values of temperature tend to accelerate creep, leading to cladding failure much sooner than anticipated. The effect of fission product decay heat is to reduce significantly the maximum stress developed in the cladding during a beam-trip-induced transient. The potential impact of irradiation damage and the effects of the liquid metal coolant environment on the cladding are discussed. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We present a novel vertically-coupled active-passive integration architecture that provides an order of magnitude reduction in coupling coefficient variation between misaligned waveguides when compared with a conventional vertically-coupled structure. © 2005 Optical Society of America.