15 resultados para alpaca top and yarn

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis of multiwalled carbon nanotubes (MWCNTs) encapsulated with Co/Pd magnetic and nonmagnetic multi-metal nanowires using Co and Pd thin-layers deposited on Si substrate by microwave plasma enhanced chemical vapor deposition using a bias-enhanced growth method. Detailed structural and compositional investigations of these metal nanowires inside MWCNTs were carried out by scanning electron microscopy and transmission electron microscopy to elucidate the growth mechanisms. Energy dispersive X-ray spectroscopy revealed that MWCNTs were encapsulated with Co and Pd nanowires, separately, at the tube top and the bottom of Co nanowire, respectively. The face-centered-cubic (fcc) structure of Co nanowires was confirmed by a selected area diffraction pattern. We proposed a fruitful description for the encapsulating mechanisms of both Co and Pd multi-metal nanowires. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant. As with the swirling blob, an imposed magnetic field inhibits the formation of a vortex sheet. A strong magnetic field completely suppresses the phenomenon, replacing it with an axial diffusion of momentum, while a weak magnetic field allows the sheet to form, but places a lower bound on its thickness. The magnetic field does not, however, change the net vertical momentum of the blob, which always increases linearly with time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for characterizing the propagation of the magnetic flux in an artificially drilled bulk high-temperature superconductor (HTS) during a pulsed-field magnetization. As the magnetic pulse penetrates the cylindrical sample, the magnetic flux density is measured simultaneously in 16 holes by means of microcoils that are placed across the median plane, i.e. at an equal distance from the top and bottom surfaces, and close to the surface of the sample. We discuss the time evolution of the magnetic flux density in the holes during a pulse and measure the time taken by the external magnetic flux to reach each hole. Our data show that the flux front moves faster in the median plane than on the surface when penetrating the sample edge; it then proceeds faster along the surface than in the bulk as it penetrates the sample further. Once the pulse is over, the trapped flux density inside the central hole is found to be about twice as large in the median plane than on the surface. This ratio is confirmed by modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a novel approach to the design and fabrication of a high temperature inverter module for hybrid electrical vehicles is presented. Firstly, SiC power electronic devices are considered in place of the conventional Si devices. Use of SiC raises the maximum practical operating junction temperature to well over 200°C, giving much greater thermal headroom between the chips and the coolant. In the first fabrication, a SiC Schottky barrier diode (SBD) replaces the Si pin diode and is paired with a Si-IGBT. Secondly, double-sided cooling is employed, in which the semiconductor chips are sandwiched between two substrate tiles. The tiles provide electrical connections to the top and the bottom of the chips, thus replacing the conventional wire bonded interconnect. Each tile assembly supports two IGBTs and two SBDs in a half-bridge configuration. Both sides of the assembly are cooled directly using a high-performance liquid impingement system. Specific features of the design ensure that thermo-mechanical stresses are controlled so as to achieve long thermal cycling life. A prototype 10 kW inverter module is described incorporating three half-bridge sandwich assemblies, gate drives, dc-link capacitance and two heat-exchangers. This achieves a volumetric power density of 30W/cm3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper summarises the findings of investigations to date in understanding what luxury and premiumness mean to the high-end automotive consumer. Existing writings on luxury and premiumness are considered. An exploratory study was carried out in two countries using 309 respondents and 18 prestige cars. A "stream of consciousness" approach was used to capture respondent's views on a selection of vehicles. The codified transcripts were used to identify key differences between the top and bottom rated vehicles, in terms of the nature and quantity of emotional responses elicited. This paper describes some of these key product differences that were self-reported to impact upon a luxury response. Finally, suggestions are made as to the next steps required for this research. © 2007 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical description of the turbulent mixing within and the draining of a dense fluid layer from a box connected to a uniform density, quiescent environment through openings in the top and the base of the box is presented in this paper. This is an extension of the draining model developed by Linden et al. (Annu. Rev. Fluid Mech. vol. 31, 1990, pp. 201-238) and includes terms that describe localized mixing within the emptying box at the density interface. Mixing is induced by a turbulent flow of replacement fluid into the box and as a consequence we predict, and observe in complementary experiments, the development of a three-layer stratification. Based on the data collated from previous researchers, three distinct formulations for entrainment fluxes across density interfaces are used to account for this localized mixing. The model was then solved numerically for the three mixing formulations. Analytical solutions were developed for one formulation directly and for a second on assuming that localized mixing is relatively weak though still significant in redistributing buoyancy on the timescale of the draining process. Comparisons between our theoretical predictions and the experimental data, which we have collected on the developing layer depths and their densities show good agreement. The differences in predictions between the three mixing formulations suggest that the normalized flux turbulently entrained across a density interface tends to a constant value for large values of a Froude number FrT, based on conditions of the inflow through the top of the box, and scales as the cube of FrT for small values of FrT. The upper limit on the rate of entrainment into the mixed layer results in a minimum time (tD) to remove the original dense layer. Using our analytical solutions, we bound this time and show that 0.2tE ≈tD tE, i.e. the original dense layer may be depleted up to five times more rapidly than when there is no internal mixing and the box empties in a time tE. © 2010 Cambridge University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30mT to 130mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine theoretically the transient displacement flow and density stratification that develops within a ventilated box after two localized floor-level heat sources of unequal strengths are activated. The heat input is represented by two non-interacting turbulent axisymmetric plumes of constant buoyancy fluxes B1 and B2 > B1. The box connects to an unbounded quiescent external environment of uniform density via openings at the top and base. A theoretical model is developed to predict the time evolution of the dimensionless depths λj and mean buoyancies δj of the 'intermediate' (j = 1) and 'top' (j = 2) layers leading to steady state. The flow behaviour is classified in terms of a stratification parameter S, a dimensionless measure of the relative forcing strengths of the two buoyant layers that drive the flow. We find that dδ1/dτ α 1/λ1 and dδ2/dτ α 1/λ2, where τ is a dimensionless time. When S 1, the intermediate layer is shallow (small λ1), whereas the top layer is relatively deep (large λ2) and, in this limit, δ1 and δ2 evolve on two characteristically different time scales. This produces a time lag and gives rise to a 'thermal overshoot', during which δ1 exceeds its steady value and attains a maximum during the transients; a flow feature we refer to, in the context of a ventilated room, as 'localized overheating'. For a given source strength ratio ψ = B1/B2, we show that thermal overshoots are realized for dimensionless opening areas A < Aoh and are strongly dependent on the time history of the flow. We establish the region of {A, ψ} space where rapid development of δ1 results in δ1 > δ2, giving rise to a bulk overturning of the buoyant layers. Finally, some implications of these results, specifically to the ventilation of a room, are discussed. © Cambridge University Press 2013.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Established literature on new product development (NPD) management recognizes top management involvement (TMI) as one of the most critical success factors. With increasing pressure to sustain competitive advantage and growth, NPD activities remain the focus of close interest from top management in many organizations. TMI in the NPD domain is receiving increasing academic attention. Despite its criticality, there is no systematic review of the existing literature to inform and stimulate researchers in the field for further investigation. This paper introduces the current state of literature on TMI in NPD, synthesizes important findings, and identifies the gaps and deficiencies in this research stream. The contents of the selected articles, which investigated TMI in NPD, are analyzed based on the type of the study, level of analysis, research methodology, operationalization of TMI, and main findings. Additionally, other studies, which did not directly investigate TMI and support in NPD, but were sufficiently related, are briefly summarized. As a result of this detailed literature review, it can be stated that both exploratory and relational studies provide rich evidence on the critical role of top management in NPD. However, the identified gaps and deficiencies in this research stream call for a better theoretical understanding and well-defined constructs of TMI in the NPD domain for different levels of analysis for future studies.

Relevância:

40.00% 40.00%

Publicador: