119 resultados para algoritmi non evolutivi pattern recognition analisi dati avanzata metodi matematici intelligenza artificiale non evolutive algorithms artificial intelligence

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book will be of particular interest to academics, researchers, and graduate students at universities and industrial practitioners seeking to apply mobile and pervasive computing systems to improve construction industry productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present Multi Scale Shape Index (MSSI), a novel feature for 3D object recognition. Inspired by the scale space filtering theory and Shape Index measure proposed by Koenderink & Van Doorn [6], this feature associates different forms of shape, such as umbilics, saddle regions, parabolic regions to a real valued index. This association is useful for representing an object based on its constituent shape forms. We derive closed form scale space equations which computes a characteristic scale at each 3D point in a point cloud without an explicit mesh structure. This characteristic scale is then used to estimate the Shape Index. We quantitatively evaluate the robustness and repeatability of the MSSI feature for varying object scales and changing point cloud density. We also quantify the performance of MSSI for object category recognition on a publicly available dataset. © 2013 Springer-Verlag.