32 resultados para adolescence, classification and regression tree analysis, leisure
em Cambridge University Engineering Department Publications Database
Semantic Discriminant mapping for classification and browsing of remote sensing textures and objects
Resumo:
We present a new approach based on Discriminant Analysis to map a high dimensional image feature space onto a subspace which has the following advantages: 1. each dimension corresponds to a semantic likelihood, 2. an efficient and simple multiclass classifier is proposed and 3. it is low dimensional. This mapping is learnt from a given set of labeled images with a class groundtruth. In the new space a classifier is naturally derived which performs as well as a linear SVM. We will show that projecting images in this new space provides a database browsing tool which is meaningful to the user. Results are presented on a remote sensing database with eight classes, made available online. The output semantic space is a low dimensional feature space which opens perspectives for other recognition tasks. © 2005 IEEE.
Resumo:
Life is full of difficult choices. Everyone has their own way of dealing with these, some effective, some not. The problem is particularly acute in engineering design because of the vast amount of information designers have to process. This paper deals with a subset of this set of problems: the subset of selecting materials and processes, and their links to the design of products. Even these, though, present many of the generic problems of choice, and the challenges in creating tools to assist the designer in making them. The key elements are those of classification, of indexing, of reaching decisions using incomplete data in many different formats, and of devising effective strategies for selection. This final element - that of selection strategies - poses particular challenges. Product design, as an example, is an intricate blend of the technical and (for want of a better word) the aesthetic. To meet these needs, a tool that allows selection by analysis, by analogy, by association and simply by 'browsing' is necessary. An example of such a tool, its successes and remaining challenges, will be described.
Resumo:
Information theoretic active learning has been widely studied for probabilistic models. For simple regression an optimal myopic policy is easily tractable. However, for other tasks and with more complex models, such as classification with nonparametric models, the optimal solution is harder to compute. Current approaches make approximations to achieve tractability. We propose an approach that expresses information gain in terms of predictive entropies, and apply this method to the Gaussian Process Classifier (GPC). Our approach makes minimal approximations to the full information theoretic objective. Our experimental performance compares favourably to many popular active learning algorithms, and has equal or lower computational complexity. We compare well to decision theoretic approaches also, which are privy to more information and require much more computational time. Secondly, by developing further a reformulation of binary preference learning to a classification problem, we extend our algorithm to Gaussian Process preference learning.
Semantic discriminant mapping for classification and browsing of remote sensing textures and objects