80 resultados para Zonal mean circulation
em Cambridge University Engineering Department Publications Database
Resumo:
A combination of singular systems analysis and analytic phase techniques are used to investigate the possible occurrence in observations of coherent synchronization between quasi-biennial and semi-annual oscillations (QBOs; SAOs) in the stratosphere and troposphere. Time series of zonal mean zonal winds near the Equator are analysed from the ERA-40 and ERA-interim reanalysis datasets over a ∼ 50-year period. In the stratosphere, the QBO is found to synchronize with the SAO almost all the time, but with a frequency ratio that changes erratically between 4:1, 5:1 and 6:1. A similar variable synchronization is also evident in the tropical troposphere between semi-annual and quasi-biennial cycles (known as TBOs). Mean zonal winds from ERA-40 and ERA-interim, and also time series of indices for the Indian and West Pacific monsoons, are commonly found to exhibit synchronization, with SAO/TBO ratios that vary between 4:1 and 7:1. Coherent synchronization between the QBO and tropical TBO does not appear to persist for long intervals, however. This suggests that both the QBO and tropical TBOs may be separately synchronized to SAOs that are themselves enslaved to the seasonal cycle, or to the annual cycle itself. However, the QBO and TBOs are evidently only weakly coupled between themselves and are frequently found to lose mutual coherence when each changes its frequency ratio to its respective SAO. This suggests a need to revise a commonly cited paradigm that advocates the use of stratospheric QBO indices as a predictor for tropospheric phenomena such as monsoons and hurricanes. © 2012 Royal Meteorological Society.
Resumo:
In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the earliest possible opportunity. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper presents an analytical mean-line design study for a repeating-stage, axial-flow Low Pressure (LP) turbine. The problem of how to measure blade loading is first addressed. The analysis demonstrates that the Zweifel coefficient [1] is not a reasonable gauge of blade loading because it inherently depends on the flow angles. A more appropriate coefficient based on blade circulation is proposed. Without a large set of turbine test data it is not possible to directly evaluate the accuracy of a particular loss correlation. The analysis therefore focuses on the efficiency trends with respect to flow coefficient, stage loading, lift coefficient and Reynolds number. Of the various loss correlations examined, those based on Ainley and Mathieson ([2], [3], [4]) do not produce realistic trends. The profile loss model of Coull and Hodson [5] and the secondary loss models of Craig and Cox [6] and Traupel [7] gave the most reasonable results. The analysis suggests that designs with the highest flow turning are the least sensitive to increases in blade loading. The increase in Reynolds number lapse with loading is also captured, achieving reasonable agreement with experiments. Copyright © 2011 by ASME.
Resumo:
In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the preliminary design stage. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper considers how blade loading should be measured, compares the performance of various loss correlations, and explores the impact of blade lift on performance and lapse rates. To these ends, an analytical design study is presented for a repeating-stage, axial-flow LP turbine. It is demonstrated that the long-established Zweifel lift coefficient (Zweifel, 1945, "The Spacing of Turbomachine Blading, Especially with Large Angular Deflection" Brown Boveri Rev., 32(1), pp. 436-444) is flawed because it does not account for the blade camber. As a result the Zweifel coefficient is only meaningful for a fixed set of flow angles and cannot be used as an absolute measure of blade loading. A lift coefficient based on circulation is instead proposed that accounts for the blade curvature and is independent of the flow angles. Various existing profile and secondary loss correlations are examined for their suitability to preliminary design. A largely qualitative comparison demonstrates that the loss correlations based on Ainley and Mathieson (Ainley and Mathieson, 1957, "A Method of Performance Estimation for Axial-Flow Turbines," ARC Reports and Memoranda No. 2974; Dunham and Came, 1970, "Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction," Trans. ASME: J. Eng. Gas Turbines Power, July, pp. 252-256; Kacker and Okapuu, 1982, "A Mean Line Performance Method for Axial Flow Turbine Efficiency," J. Eng. Power, 104, pp. 111-119). are not realistic, while the profile loss model of Coull and Hodson (Coull and Hodson, 2011, "Predicting the Profile Loss of High-Lift Low Pressure Turbines," J. Turbomach., 134(2), pp. 021002) and the secondary loss model of (Traupel, W, 1977, Thermische Turbomaschinen, Springer-Verlag, Berlin) are arguably the most reasonable. A quantitative comparison with multistage rig data indicates that, together, these methods over-predict lapse rates by around 30%, highlighting the need for improved loss models and a better understanding of the multistage environment. By examining the influence of blade lift across the Smith efficiency chart, the analysis demonstrates that designs with higher flow turning will tend to be less sensitive to increases in blade loading. © 2013 American Society of Mechanical Engineers.
Resumo:
Hybrid numerical large eddy simulation (NLES) and detached eddy simulation (DES) methods are assessed on a labyrinth seal geometry. A high sixth order discretization scheme is used and is validated using a test case of a two dimensional vortex. The hybrid approach adopts a new blending function and along with DES is initially validated using a simple cavity flow. The NLES method is also validated outside of RANS zones. It is found that there is very little resolved turbulence in the cavity for the DES simulation. For the labyrinth seal calculations the DES approach is problematic giving virtually no resolved turbulence content. It is seen that over the tooth tips the extent of the LES region is small and is likely to be a strong contributor to excessive flow damping in these regions. On the other hand the zonal Hamilton-Jacobi approach did not suffer from this trait. In both cases the meshes used are considered to be hybrid RANS-LES adequate. Fortunately (or perhaps unfortunately) the DES profiles are in agreement with the time mean experimental measurements. It is concluded that for an inexperienced CFD practitioner this could have wider implications particularly if transient results such as unsteady loading are desired. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.