38 resultados para Zinc-oxide nanostructures

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the synthesis of zinc oxide (ZnO) nanostructures and examines the performance of nanocomposite thin-film transistors (TFTs) fabricated using ZnO dispersed in both n- and p-type polymer host matrices. The ZnO nanostructures considered here comprise nanowires and tetrapods and were synthesized using vapor phase deposition techniques involving the carbothermal reduction of solid-phase zinc-containing compounds. Measurement results of nanocomposite TFTs based on dispersion of ZnO nanorods in an n-type organic semiconductor ([6, 6]-phenyl-C61-butyric acid methyl ester) show electron field-effect mobilities in the range 0.3-0.6 cm2V-1 s-1. representing an approximate enhancement by as much as a factor of 40 from the pristine state. The on/off current ratio of the nanocomposite TFTs approach 106 at saturation with off-currents on the order of 10 pA. The results presented here, although preliminary, show a highly promising enhancement for realization of high-performance solution-processable n-type organic TFTs. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlling the growth of ZnO nanostructures for photovoltaic applications will ensure greater device efficiency and parameter control. This paper reports on methods to engineer the morphology and tailor the nanostructure growth direction through the hydrothermal synthesis method. Effective control is achieved through the use of a sputtered zinc layer together with modifications of the growth solution. These nanostructures have been developed with a view to incorporation into excitonic solar cells, and methods to improve surface stability using a fully aqueous synthesis method will be discussed. © by Oldenbourg Wissenschaftsverlag, München.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the above entitled paper (ibid., vol. 55, no. 11, pp. 3001-3011), two errors were noticed after the paper went to press. The errors are corrected here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates a catalyst-free synthesis of ZnO nanostructures using platinum microheaters under ambient environmental conditions. Different morphologies of ZnO nanostructures are synthesized from the oxidization of Zn thin film by local heating. The synthesized ZnO structures are characterized by the SEM, EDX and Raman spectra. The characterization of two shapes of Pt microheaters is investigated and the relationship between the applied heating power and ZnO nanostructures synthesis is investigated under ambient conditions. We observe that the density and morphology of ZnO nanostructures can be controlled through applied heating voltages. Furthermore, a connected composite structural (Zn-ZnO-Zn) layer is synthesized using combinative microheaters. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A catalyst-free synthesis of ZnO nanostructures using platinum microheaters under ambient environmental conditions has been developed. Different types of ZnO nanostructures are synthesized from the oxidization of Zn thin film by local heating. The characterization of two shapes of Pt microheaters is investigated and the relationship between the applied power for heat generation and ZnO nanostructure synthesis is investigated by local heating experiments under ambient conditions. Based on the developed heating approach, synthesis area, location, and morphologies of ZnO nanostructures can be controlled through the deposited thickness of Zn layer and applied heating voltages. Furthermore, a connected multiple-structure (Zn-ZnO-Zn) layer is synthesized using combinative multimicroheaters. © 2002-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly transparent zinc oxide (ZnO) nanowire networks have been used as the active material in thin film transistors (TFTs) and complementary inverter devices. A systematic study on a range of networks of variable density and TFT channel length was performed. ZnO nanowire networks provide a less lithographically intense alternative to individual nanowire devices, are always semiconducting, and yield significantly higher mobilites than those achieved from currently used amorphous Si and organic TFTs. These results suggest that ZnO nanowire networks could be ideal for inexpensive large area electronics. © 2009 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to review our recent results on the growth and optimization of carbon nanotubes (CNTs) and CNT/Zinc Oxide nanostructures and present and discuss their suitability for various applications such as cold cathode electron sources for use in x-ray sources and lighting. ©2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent efforts towards the fabrication of touch sensing systems are presented, in which zinc oxide nanowire arrays are embedded in a polymer matrix to produce an engineered composite material. In the future, these sensor systems will be fully flexible and multi-touch as intended for Nokia's 'Morph' concept device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to describe the growth and optimization of carbon nanotube (CNT) and CNT/Zinc Oxide nanostructures to produce novel electron sources. The emitters studied in this project are based on regular array of vertically aligned 5 μm height and 50 nm diameter CNTs with a pitch of 10 μm as described previously (1). Such a cathode design allows us to minimize electric field shielding effects and thus to help in optimizing the emitted current density. We have previously obtained a current density of 1 A/cm 2 from such arrays in DC mode, and over 12 A/cm2 in pulsed mode at RF frequencies. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present experimental results describing enhanced readout of the vibratory response of a doubly clamped zinc oxide (ZnO) nanowire employing a purely electrical actuation and detection scheme. The measured response suggests that the piezoelectric and semiconducting properties of ZnO effectively enhance the motional current for electromechanical transduction. For a doubly clamped ZnO nanowire resonator with radius ~10 nm and length ~1.91 µm, a resonant frequency around 21.4 MHz is observed with a quality factor (Q) of ~358 in vacuum. A comparison with the Q obtained in air (~242) shows that these nano-scale devices may be operated in fluid as viscous damping is less significant at these length scales. Additionally, the suspended nanowire bridges show field effect transistor (FET) characteristics when the underlying silicon substrate is used as a gate electrode or using a lithographically patterned in-plane gate electrode. Moreover, the Young's modulus of ZnO nanowires is extracted from a static bending test performed on a nanowire cantilever using an AFM and the value is compared to that obtained from resonant frequency measurements of electrically addressed clamped–clamped beam nanowire resonators.