7 resultados para Wolf hunting

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anomaly detection approach is considered for the mine hunting in sonar imagery problem. The authors exploit previous work that used dual-tree wavelets and fractal dimension to adaptively suppress sand ripples and a matched filter as an initial detector. Here, lacunarity inspired features are extracted from the remaining false positives, again using dual-tree wavelets. A one-class support vector machine is then used to learn a decision boundary, based only on these false positives. The approach exploits the large quantities of 'normal' natural background data available but avoids the difficult requirement of collecting examples of targets in order to train a classifier. © 2012 The Institution of Engineering and Technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop, numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric, and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and, in general, it was difficult to discern clear trends in the data. For the Reynolds-averaged Navier-Stokes (RANS) methods, the choice of turbulence model appeared to be the largest factor in solution accuracy. Scale-resolving methods, such as large-eddy simulation (LES), hybrid RANS/LES, and direct numerical simulation, produced error levels similar to RANS methods but provided superior predictions of normal stresses. Copyright © 2012 by Daniella E. Raveh and Michael Iovnovich.