8 resultados para Weather forecasting.
em Cambridge University Engineering Department Publications Database
Resumo:
Sensor networks can be naturally represented as graphical models, where the edge set encodes the presence of sparsity in the correlation structure between sensors. Such graphical representations can be valuable for information mining purposes as well as for optimizing bandwidth and battery usage with minimal loss of estimation accuracy. We use a computationally efficient technique for estimating sparse graphical models which fits a sparse linear regression locally at each node of the graph via the Lasso estimator. Using a recently suggested online, temporally adaptive implementation of the Lasso, we propose an algorithm for streaming graphical model selection over sensor networks. With battery consumption minimization applications in mind, we use this algorithm as the basis of an adaptive querying scheme. We discuss implementation issues in the context of environmental monitoring using sensor networks, where the objective is short-term forecasting of local wind direction. The algorithm is tested against real UK weather data and conclusions are drawn about certain tradeoffs inherent in decentralized sensor networks data analysis. © 2010 The Author. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
Resumo:
Forecasting the returns of assets at high frequency is the key challenge for high-frequency algorithmic trading strategies. In this paper, we propose a jump-diffusion model for asset price movements that models price and its trend and allows a momentum strategy to be developed. Conditional on jump times, we derive closed-form transition densities for this model. We show how this allows us to extract a trend from high-frequency finance data by using a Rao-Blackwellized variable rate particle filter to filter incoming price data. Our results show that even in the presence of transaction costs our algorithm can achieve a Sharpe ratio above 1 when applied across a portfolio of 75 futures contracts at high frequency. © 2011 IEEE.