18 resultados para WOOL FABRICS

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical mathematical model for friction between a fabric strip and the volar forearm has been developed and validated experimentally. The model generalizes the common assumption of a cylindrical arm to any convex prism, and makes predictions for pressure and tension based on Amontons' law. This includes a relationship between the coefficient of static friction (mu) and forces on either end of a fabric strip in contact with part of the surface of the arm and perpendicular to its axis. Coefficients of friction were determined from experiments between arm phantoms of circular and elliptical cross-section (made from Plaster of Paris covered in Neoprene) and a nonwoven fabric. As predicted by the model, all values of mu calculated from experimental results agreed within +/- 8 per cent, and showed very little systematic variation with the deadweight, geometry, or arc of contact used. With an appropriate choice of coordinates the relationship predicted by this model for forces on either end of a fabric strip reduces to the prediction from the common model for circular arms. This helps to explain the surprisingly accurate values of mu obtained by applying the cylindrical model to experimental data on real arms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews advances in the technology of integrated semiconductor optical amplifier based photonic switch fabrics, with particular emphasis on their suitability for high performance network switches for use within a datacenter. The key requirements for large port count optical switch fabrics are addressed noting the need for switches with substantial port counts. The design options for a 16×16 port photonic switch fabric architecture are discussed and the choice of a Clos-tree design is described. The control strategy, based on arbitration and scheduling, for an integrated switch fabric is explained. The detailed design and fabrication of the switch is followed by experimental characterization, showing net optical gain and operation at 10 Gb/s with bit error rates lower than 10-9. Finally improvements to the switch are suggested, which should result in 100 Gb/s per port operation at energy efficiencies of 3 pJ/bit. © 2011 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of initial soil fabric and mode of shearing on quasi-steady state line in void ratiostress space are studied by employing the Distinct Element Method numerical analysis. The results show that the initial soil fabric and the mode of shearing have a profound effect on the location of the quasi-steady state line. The evolution of the soil fabric during the course of undrained shearing shows that the specimens with different initial soil fabrics reach quasi-steady state at various soil fabric conditions. At quasi-steady state, the soil fabric has a significant adjustment to change its behavior from contractive to dilative. As the stress state approaches the steady state, the soil fabrics of different initial conditions become similar. The numerical analysis results are compared qualitatively with the published experimental data and the effects of specimen reconstitution methods and mode of shearing found in the experimental studies canbe systematically explained by the numerical analysis. © 2009 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness.