2 resultados para WINTER
em Cambridge University Engineering Department Publications Database
Resumo:
In winter, natural ventilation can be achieved either through mixing ventilation or upward displacement ventilation (P.F. Linden, The fluid mechanics of natural ventilation, Annual Review of Fluid Mechanics 31 (1999) pp. 201-238). We show there is a significant energy saving possible by using mixing ventilation, in the case that the internal heat gains are significant, and illustrate these savings using an idealized model, which predicts that with internal heat gains of order 0.1 kW per person, mixing ventilation uses of a fraction of order 0.2-0.4 of the heat load of displacement ventilation assuming a well-insulated building. We then describe a strategy for such mixing natural ventilation in an atrium style building in which the rooms surrounding the atrium are able to vent directly to the exterior and also through the atrium to the exterior. The results are motivated by the desire to reduce the energy burden in large public buildings such as hospitals, schools or office buildings centred on atria. We illustrate a strategy for the natural mixing ventilation in order that the rooms surrounding the atrium receive both pre-heated but also sufficiently fresh air, while the central atrium zone remains warm. We test the principles with some laboratory experiments in which a model air chamber is ventilated using both mixing and displacement ventilation, and compare the energy loads in each case. We conclude with a discussion of the potential applications of the approach within the context of open plan atria type office buildings.
Resumo:
Vernalization is the process whereby the floral transition is promoted through exposure of plants to long periods of cold temperature or winter. A requirement for vernalization aligns flowering with the seasons to ensure that their reproductive phase occurs in favorable conditions. The mitotic stability of vernalization, suggestive of an epigenetic mechanism, has intrigued researchers for many years. Genetic analysis of the vernalization requirement in Arabidopsis has identified key floral repressor genes, FRI and FLC. The action of these floral repressors is antagonized by vernalization and the activity of a set of genes grouped into the autonomous floral pathway. Analysis of the vernalization pathway has defined a series of epigenetic regulators crucial for "cellular-memory" of the cold signal, whereas the autonomous pathway appears to function in part through posttranscriptional mechanisms. The mechanism of the vernalization requirement, which is now being explored in a range of plant species, should uncover the evolutionary origins of this key agronomic trait.