3 resultados para WHEAT-FLOUR

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Humans perform fascinating science experiments at home on a daily basis when they undertake the modification of natural and naturally-derived materials by a cooking process prior to consumption. The material properties of such foods are of interest to food scientists (texture is often fundamental to food acceptability), oral biologists (foods modulate feeding behavior), anthropologists (cooking is probably as old as the genus Homo and distinguishes us from all other creatures) and dentists (foods interact with tooth and tooth replacement materials). Materials scientists may be interested in the drastic changes in food properties observed over relatively short cooking times. In the current study, the mechanical properties of one of the most common (and oldest at 4,000+ years) foods on earth, the noodle, were examined as a function of cooking time. Two types of noodles were studied, each made from natural materials (wheat flour, salt, alkali and water) by kneading dough and passing them through a pasta-making machine. These were boiled for between 2-14 min and tested at regular intervals from raw to an overcooked state. Cyclic tensile tests at small strain levels were used to examine energy dissipation characteristics. Energy dissipation was >50% per cycle in uncooked noodles, but decreased by an order of magnitude with cooking. Fractional dissipation values remained approximately constant at cooking times greater than 7 min. Overall, a greater effect of cooking was on viscoplastic dissipation characteristics rather than on fracture resistance. The results of the current study plot the evolution of a viscoplastic mixture into an essentially elastic material in the space of 7 minutes and have broad implications for understanding what cooking does to food materials. In particular, they suggest that textural assessment by consumers of the optimally cooked state of food has a definite physical definition. © 2007 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofuels are increasingly promoted worldwide as a means for reducing greenhouse gas (GHG) emissions from transport. However, current regulatory frameworks and most academic life cycle analyses adopt a deterministic approach in determining the GHG intensities of biofuels and thus ignore the inherent risk associated with biofuel production. This study aims to develop a transparent stochastic method for evaluating UK biofuels that determines both the magnitude and uncertainty of GHG intensity on the basis of current industry practices. Using wheat ethanol as a case study, we show that the GHG intensity could span a range of 40-110 gCO2e MJ-1 when land use change (LUC) emissions and various sources of uncertainty are taken into account, as compared with a regulatory default value of 44 gCO2e MJ-1. This suggests that the current deterministic regulatory framework underestimates wheat ethanol GHG intensity and thus may not be effective in evaluating transport fuels. Uncertainties in determining the GHG intensity of UK wheat ethanol include limitations of available data at a localized scale, and significant scientific uncertainty of parameters such as soil N2O and LUC emissions. Biofuel polices should be robust enough to incorporate the currently irreducible uncertainties and flexible enough to be readily revised when better science is available. © 2013 IOP Publishing Ltd.