5 resultados para Voisey, Baie de (T.-N.-L.)--Conditions économiques
em Cambridge University Engineering Department Publications Database
Resumo:
The control of a wind turbine to the mean wind speed in a gusty wind results in very poor performance. Fluctuations in wind speed with time constants shorter than the response time of a wind turbine results in operation away from optimum design conditions. The effectiveness of a turbine operating in a gusty wind is shown though the use of an unsteady performance coefficient, C e. This performance coefficient is similar in form to a power coefficient. However in order to accommodate unsteady effects, Ce is defined as a ratio of energy extracted to the total wind energy available over a set time period. The turbine's response to real wind data is modelled, in the first instance, by assuming a constant rotational speed operation. It is shown that a significant increase in energy production can be realized by demanding a Tip Speed Ratio above the steady state optimum. The constant speed model is then further extended to incorporate inertial and controller effects. Parameters dictating how well a turbine can track a demand in Tip Speed Ratio have been identified and combined, to form a non-dimensional turbine response parameter. This parameter characterizes a turbine's ability to track a demand in Tip Speed Ratio dependent on an effective gust frequency. A significant increase in energy output of 42% and 245% is illustrated through the application of this over-speed control. This is for the constant rotational speed and Tip Speed Ratio feedback models respectively. The affect of airfoil choice on energy extraction within a gusty wind has been considered. The adaptive control logic developed enables the application of airfoils demonstrating high maximum L/D values but sharp stalling characteristics to be successfully used in a VAWT design.
Resumo:
The specific recognition between monoclonal antibody (anti-human prostate-specific antigen, anti-hPSA) and its antigen (human prostate-specific antigen, hPSA) has promising applications in prostate cancer diagnostics and other biosensor applications. However, because of steric constraints associated with interfacial packing and molecular orientations, the binding efficiency is often very low. In this study, spectroscopic ellipsometry and neutron reflection have been used to investigate how solution pH, salt concentration and surface chemistry affect antibody adsorption and subsequent antigen binding. The adsorbed amount of antibody was found to vary with pH and the maximum adsorption occurred between pH 5 and 6, close to the isoelectric point of the antibody. By contrast, the highest antigen binding efficiency occurred close to the neutral pH. Increasing the ionic strength reduced antibody adsorbed amount at the silica-water interface but had little effect on antigen binding. Further studies of antibody adsorption on hydrophobic C8 (octyltrimethoxysilane) surface and chemical attachment of antibody on (3-mercaptopropyl)trimethoxysilane/4-maleimidobutyric acid N-hydroxysuccinimide ester-modified surface have also been undertaken. It was found that on all surfaces studied, the antibody predominantly adopted the 'flat on' orientation, and antigen-binding capabilities were comparable. The results indicate that antibody immobilization via appropriate physical adsorption can replace elaborate interfacial molecular engineering involving complex covalent attachments.