7 resultados para Vicinal territory
em Cambridge University Engineering Department Publications Database
Resumo:
Field angle dependent critical current, magneto-optical microscopy and high resolution electron microscopy studies have been performed on YBa2Cu3O7-delta thin films grown on miscut substrates. High resolution electron microscopy images show that the films studied exhibited clean epitaxial growth with a low density of antiphase boundaries and stacking faults. Any antiphase boundaries (APBs) formed near the film substrate interface rapidly healed rather than extending through the thickness of the film. Unlike vicinal films grown on annealed substrates, which contain a high density of antiphase boundaries, magneto-optical imaging showed no filamentary flux penetration in the films studied. The flux penetration is, however, asymmetric. This is associated with intrinsic pinning of flux strings by the tilted a-b planes and the dependence of the pinning force on the angle between the local field and the a-b planes. Field angle dependent critical current measurements exhibited the striking vortex channeling effect previously reported in vicinal films. By combining the results of three complementary characterization techniques it is shown that extended APB free films exhibit markedly different critical current behavior compared to APB rich films. This is attributed to the role of APB sites as strong pinning centers for Josephson string vortices between the a-b planes. (C) 2003 American Institute of Physics.
Resumo:
We report on electrical transport measurements at high current densities on optimally doped YBa 2Cu 3O 7-δ thin films grown on vicinal SrTiO 3 substrates. Data were collected by using a pulsed-current technique in a four-probe arrangement, allowing to extend the current-voltage characteristics to high supercritical current densities (up to 24 MA cm -2) and high electric fields (more than 20 V/cm), in the superconducting state at temperatures between 30 and 80 K. The electric measurements were performed on tracks perpendicular to the vicinal step direction, such that the current crossed between ab planes, under magnetic field rotated in the plane defined by the crystallographic c axis and the current density. At magnetic field orientation parallel to the cuprate layers, evidence for the sliding motion along the ab planes (vortex channeling) was found. The signature of vortex channeling appeared to get enhanced with increasing electric field, due to the peculiar depinning features in the kinked vortex range. They give rise to a current-voltage characteristics steeper than in the more off-plane rectilinear vortex orientations, in the electric field range below approximately 1 V/cm. Roughly above this value, the high vortex channeling velocities (up to 8.6 km/s) could be ascribed to the flux flow, although the signature of ohmic transport appeared to be altered by unavoidable macroscopic self-heating and hot-electron-like effects. © 2012 Elsevier B.V. All rights reserved.
Resumo:
After nearly 15 years of research effort, High Temperature Superconductors (HTS) are finding a wide range of practical applications. A clear understanding of the factors controlling the current carrying capacity of these materials is a prerequisite to their successful technological development. The critical current density (Jc) in HTS is directly dependent on the structure and pinning of the Flux Line Lattice (FLL) in these materials. This thesis presents an investigation of the Jc anisotropy in HTS. The use of thin films grown on off c-axis (vicinal) substrates allowed the effect of current directions outside the cuprate planes to be studied. With this experimental geometry Berghuis, et al. (Phys. Rev. Lett. 79, 12, pg. 2332) observed a striking flux channelling effect in vicinal YBa2Cu3O7-δ (YBCO) films. By confirming, and extending, this observation, it is demonstrated that this is an intrinsic effect. The results obtained, appear to fit well with the predictions of a field angle dependent cross-over from a three dimensional rectilinear FLL to a kinked lattice of strings and pancakes. The pinning force density for movement of strings inside the cuprate planes is considerably less than that on vortex pancake elements. When the FLL is entirely string-like this reduced pinning leads to the observed channelling minima. It is observed that anti-phase boundaries enhance the Jc in vicinal YBCO films by strongly pinning vortex strings. The effect on the FLL structure cross-over of increasing anisotropy has been elucidated using de-oxygenated vicinal YBCO films. Intriguingly, the counter intuitive prediction that the range of applied field angle for which the kinked lattice is fully developed reduces with increasing anisotropy, appears to be confirmed. Although vortex channelling cannot be observed in c-axis YBCO films, the pinning force density for vortex string channelling has been extracted by observing string dragging. By studying the effect of rotating the applied field at a constant angle to the cuprate planes, it is possible to observe the cross-over into the string pancake regime in c-axis films. In the 3D region, the observed behaviour is well explained by the anisotropic Ginzburg-Landau model. Measurements were also made on thin films of the much more anisotropic Bi 2Sr2CaCu2O8+x material, grown on vicinal substrates. The absence of any flux channelling effect and clear adherence to the expected Kes-Law behaviour in the observed Jc characteristics does not provide evidence for the existence of the predicted ‘crossing lattice’ in Bi 2Sr2CaCu2O8+x .
Resumo:
Vortex breaking has traditionally been studied for non-uniform critical current densities, although it may also appear due to non-uniform pinning force distributions. In this article we study the case of a high-pinning/low-pinning/high-pinning layered structure. We have developed an elastic model for describing the deformation of a vortex in these systems in the presence of a uniform transport current density J for any arbitrary orientation of the transport current and the magnetic field. If J is above a certain critical value, J(c), the vortex breaks and a finite effective resistance appears. Our model can be applied to some experimental configurations where vortex breaking naturally exists. This is the case for YBa2Cu3O7-delta (YBCO) low-angle grain boundaries and films on vicinal substrates, where the breaking is experienced by Abrikosov-Josephson vortices (AJV) and Josephson string vortices (SV), respectively. With our model, we have experimentally extracted some intrinsic parameters of the AJV and SV, such as the line tension is an element of(l) and compared it to existing predictions based on the vortex structure.