11 resultados para Vestibular Deficit
em Cambridge University Engineering Department Publications Database
Resumo:
Reynolds averaged Navier-Stokes model performances in the stagnation and wake regions for turbulent flows with relatively large Lagrangian length scales (generally larger than the scale of geometrical features) approaching small cylinders (both square and circular) is explored. The effective cylinder (or wire) diameter based Reynolds number, ReW ≤ 2.5 × 103. The following turbulence models are considered: a mixing-length; standard Spalart and Allmaras (SA) and streamline curvature (and rotation) corrected SA (SARC); Secundov's νt-92; Secundov et al.'s two equation νt-L; Wolfshtein's k-l model; the Explicit Algebraic Stress Model (EASM) of Abid et al.; the cubic model of Craft et al.; various linear k-ε models including those with wall distance based damping functions; Menter SST, k-ω and Spalding's LVEL model. The use of differential equation distance functions (Poisson and Hamilton-Jacobi equation based) for palliative turbulence modeling purposes is explored. The performance of SA with these distance functions is also considered in the sharp convex geometry region of an airfoil trailing edge. For the cylinder, with ReW ≈ 2.5 × 103 the mixing length and k-l models give strong turbulence production in the wake region. However, in agreement with eddy viscosity estimates, the LVEL and Secundov νt-92 models show relatively little cylinder influence on turbulence. On the other hand, two equation models (as does the one equation SA) suggest the cylinder gives a strong turbulence deficit in the wake region. Also, for SA, an order or magnitude cylinder diameter decrease from ReW = 2500 to 250 surprisingly strengthens the cylinder's disruptive influence. Importantly, results for ReW ≪ 250 are virtually identical to those for ReW = 250 i.e. no matter how small the cylinder/wire its influence does not, as it should, vanish. Similar tests for the Launder-Sharma k-ε, Menter SST and k-ω show, in accordance with physical reality, the cylinder's influence diminishing albeit slowly with size. Results suggest distance functions palliate the SA model's erroneous trait and improve its predictive performance in wire wake regions. Also, results suggest that, along the stagnation line, such functions improve the SA, mixing length, k-l and LVEL results. For the airfoil, with SA, the larger Poisson distance function increases the wake region turbulence levels by just under 5%. © 2007 Elsevier Inc. All rights reserved.
Resumo:
The interaction between a high-pressure rotor and a downstream vane is dominated by vortex-blade interaction. Each rotor blade passing period two co-rotating vortex pairs, the tip-leakage and upper passage vortex and the lower passage and trailing shed vortex, impinge on, and are cut by, the vane leading edge. In addition to the streamwise vortex the tip-leakage flow also contains a large velocity deficit. This causes the interaction of the tip-leakage flow with a downstream vane to differ from typical vortex blade interaction. This paper investigates the effect these interaction mechanisms have on a downstream vane. The test geometry considered was a low aspect ratio second stage vane located within a S-shaped diffuser with large radius change mounted downstream of a shroudless high-pressure turbine stage. Experimental measurements were conducted at engine-representative Mach and Reynolds numbers, and data was acquired using a fast-response aerodynamic probe upstream and downstream of the vane. Time-resolved numerical simulations were undertaken with and without a rotor tip gap in order to investigate the relative magnitude of the interaction mechanisms. The presence of the upstream stage is shown to significantly change the structure of the secondary flow in the vane and to cause a small drop in its performance.
Resumo:
In this paper, the effects of wake/leading-edge interactions were studied at off-design conditions. Measurements were performed on the stator-blade suction surface at midspan. The leading-edge flow-field was investigated using hotwire micro-traverses, hotfilm surface shear-stress sensors and pressure micro-tappings. The trailing-edge flow-field was investigated using hotwire boundary-layer traverses. Unsteady CFD calculations were also performed to aid the interpretation of the results. At low flow coefficients, the time-averaged momentum thickness of the leading-edge boundary layer was found to rise as the flow coefficient was reduced. The time-resolved momentum-thickness rose due to the interaction of the incoming rotor wake. As the flow coefficient was reduced, the incoming wakes increased in pitch-wise extent, velocity deficit and turbulence intensity. This increased both the time-resolved rise in the momentum thickness and the turbulent spot production within the wake affected boundary-layer. Close to stall, a drop in the leading-edge momentum thickness was observed in-between wake events. This was associated with the formation of a leading-edge separation bubble in-between wake events. The wake interaction with the bubble gave rise to a shedding phenomenon, which produced large length scale disturbances in the surface shear stress. Copyright © 2008 by ASME.
Resumo:
We examine the fluid mechanics of night purging in a two-storey naturally ventilated atrium building. We develop a mathematical model of a simplified atrium building and focus on the rate at which warm air purges from each storey and the atrium by displacement ventilation into a still cool night environment of a constant temperature. To develop a first insight into how the geometry of the building influences the rate at which warm air purges from each storey via the atrium we neglect heat exchange with the fabric (so there is no thermal buffering) and furthermore assume that the warm air layers in each storey and the atrium are of uniform temperature. The plumes of warm air that rise from the storeys into the atrium, causing the atrium to fill with warm air, have a very strong influence on the night purge. Modelling these as axisymmetric turbulent plumes, we identify three forms of purging behaviour. Each purge is characterised by five key times identified in the progression of the night purge and physical rationale for these differing behaviours is given. An interface velocity deficit and volumetric purge deficit are introduced as measures of the efficiency of a night purge. © 2010 Elsevier Ltd.
Resumo:
A key challenge in achieving good transient performance of highly boosted engines is the difficulty of accelerating the turbocharger from low air flow conditions (“turbo lag”). Multi-stage turbocharging, electric turbocharger assistance, electric compressors and hybrid powertrains are helpful in the mitigation of this deficit, but these technologies add significant cost and integration effort. Air-assist systems have the potential to be more cost-effective. Injecting compressed air into the intake manifold has received considerable attention, but the performance improvement offered by this concept is severely constrained by the compressor surge limit. The literature describes many schemes for generating the compressed gas, often involving significant mechanical complexity and/or cost. In this paper we demonstrate a novel exhaust assist system in which a reservoir is charged during braking. Experiments have been conducted using a 2.0 litre light-duty Diesel engine equipped with exhaust gas recirculation (EGR) and variable geometry turbine (VGT) coupled to an AC transient dynamometer, which was controlled to mimic engine load during in-gear braking and acceleration. The experimental results confirm that the proposed system reduces the time to torque during the 3rd gear tip-in by around 60%. Such a significant improvement was possible due to the increased acceleration of turbocharger immediately after the tip-in. Injecting the compressed gas into the exhaust manifold circumvents the problem of compressor surge and is the key enabler of the superior performance of the proposed concept.
Resumo:
Background: Bradykinesia is a cardinal feature of Parkinson's disease (PD). Despite its disabling impact, the precise cause of this symptom remains elusive. Recent thinking suggests that bradykinesia may be more than simply a manifestation of motor slowness, and may in part reflect a specific deficit in the operation of motivational vigour in the striatum. In this paper we test the hypothesis that movement time in PD can be modulated by the specific nature of the motivational salience of possible action-outcomes. Methodology/Principal Findings: We developed a novel movement time paradigm involving winnable rewards and avoidable painful electrical stimuli. The faster the subjects performed an action the more likely they were to win money (in appetitive blocks) or to avoid a painful shock (in aversive blocks). We compared PD patients when OFF dopaminergic medication with controls. Our key finding is that PD patients OFF dopaminergic medication move faster to avoid aversive outcomes (painful electric shocks) than to reap rewarding outcomes (winning money) and, unlike controls, do not speed up in the current trial having failed to win money in the previous one. We also demonstrate that sensitivity to distracting stimuli is valence specific. Conclusions/Significance: We suggest this pattern of results can be explained in terms of low dopamine levels in the Parkinsonian state leading to an insensitivity to appetitive outcomes, and thus an inability to modulate movement speed in the face of rewards. By comparison, sensitivity to aversive stimuli is relatively spared. Our findings point to a rarely described property of bradykinesia in PD, namely its selective regulation by everyday outcomes. © 2012 Shiner et al.
Resumo:
The role dopamine plays in decision-making has important theoretical, empirical and clinical implications. Here, we examined its precise contribution by exploiting the lesion deficit model afforded by Parkinson's disease. We studied patients in a two-stage reinforcement learning task, while they were ON and OFF dopamine replacement medication. Contrary to expectation, we found that dopaminergic drug state (ON or OFF) did not impact learning. Instead, the critical factor was drug state during the performance phase, with patients ON medication choosing correctly significantly more frequently than those OFF medication. This effect was independent of drug state during initial learning and appears to reflect a facilitation of generalization for learnt information. This inference is bolstered by our observation that neural activity in nucleus accumbens and ventromedial prefrontal cortex, measured during simultaneously acquired functional magnetic resonance imaging, represented learnt stimulus values during performance. This effect was expressed solely during the ON state with activity in these regions correlating with better performance. Our data indicate that dopamine modulation of nucleus accumbens and ventromedial prefrontal cortex exerts a specific effect on choice behaviour distinct from pure learning. The findings are in keeping with the substantial other evidence that certain aspects of learning are unaffected by dopamine lesions or depletion, and that dopamine plays a key role in performance that may be distinct from its role in learning.
Resumo:
The role dopamine plays in decision-making has important theoretical, empirical and clinical implications. Here, we examined its precise contribution by exploiting the lesion deficit model afforded by Parkinson's disease. We studied patients in a two-stage reinforcement learning task, while they were ON and OFF dopamine replacement medication. Contrary to expectation, we found that dopaminergic drug state (ON or OFF) did not impact learning. Instead, the critical factor was drug state during the performance phase, with patients ON medication choosing correctly significantly more frequently than those OFF medication. This effect was independent of drug state during initial learning and appears to reflect a facilitation of generalization for learnt information. This inference is bolstered by our observation that neural activity in nucleus accumbens and ventromedial prefrontal cortex, measured during simultaneously acquired functional magnetic resonance imaging, represented learnt stimulus values during performance. This effect was expressed solely during the ON state with activity in these regions correlating with better performance. Our data indicate that dopamine modulation of nucleus accumbens and ventromedial prefrontal cortex exerts a specific effect on choice behaviour distinct from pure learning. The findings are in keeping with the substantial other evidence that certain aspects of learning are unaffected by dopamine lesions or depletion, and that dopamine plays a key role in performance that may be distinct from its role in learning. © 2012 The Author.
Resumo:
A key challenge in achieving good transient performance of highly boosted engines is the difficulty of accelerating the turbocharger from low air flow conditions (turbo lag). Multi-stage turbocharging, electric turbocharger assistance, electric compressors and hybrid powertrains are helpful in the mitigation of this deficit, but these technologies add significant cost and integration effort. Air-assist systems have the potential to be more cost-effective. Injecting compressed air into the intake manifold has received considerable attention, but the performance improvement offered by this concept is severely constrained by the compressor surge limit. The literature describes many schemes for generating the compressed gas, often involving significant mechanical complexity and/or cost. In this paper we demonstrate a novel exhaust assist system in which a reservoir is charged during braking. Experiments have been conducted using a 2.0 litre light-duty Diesel engine equipped with exhaust gas recirculation (EGR) and variable geometry turbine (VGT) coupled to an AC transient dynamometer, which was controlled to mimic engine load during in-gear braking and acceleration. The experimental results confirm that the proposed system reduces the time to torque during the 3rd gear tip-in by around 60%. Such a significant improvement was possible due to the increased acceleration of turbocharger immediately after the tip-in. Injecting the compressed gas into the exhaust manifold circumvents the problem of compressor surge and is the key enabler of the superior performance of the proposed concept. Copyright © 2013 SAE International.
Resumo:
IMPORTANCE: Forward models predict the sensory consequences of planned actions and permit discrimination of self- and non-self-elicited sensation; their impairment in schizophrenia is implied by an abnormality in behavioral force-matching and the flawed agency judgments characteristic of positive symptoms, including auditory hallucinations and delusions of control. OBJECTIVE: To assess attenuation of sensory processing by self-action in individuals with schizophrenia and its relation to current symptom severity. DESIGN, SETTING, AND PARTICIPANTS: Functional magnetic resonance imaging data were acquired while medicated individuals with schizophrenia (n = 19) and matched controls (n = 19) performed a factorially designed sensorimotor task in which the occurrence and relative timing of action and sensation were manipulated. The study took place at the neuroimaging research unit at the Institute of Cognitive Neuroscience, University College London, and the Maudsley Hospital. RESULTS: In controls, a region of secondary somatosensory cortex exhibited attenuated activation when sensation and action were synchronous compared with when the former occurred after an unexpected delay or alone. By contrast, reduced attenuation was observed in the schizophrenia group, suggesting that these individuals were unable to predict the sensory consequences of their own actions. Furthermore, failure to attenuate secondary somatosensory cortex processing was predicted by current hallucinatory severity. CONCLUSIONS AND RELEVANCE: Although comparably reduced attenuation has been reported in the verbal domain, this work implies that a more general physiologic deficit underlies positive symptoms of schizophrenia.