33 resultados para Vertebral column - Pain

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete particle simulations of column of an aggregate of identical particles impacting a rigid, fixed target and a rigid, movable target are presented with the aim to understand the interaction of an aggregate of particles upon a structure. In most cases the column of particles is constrained against lateral expansion. The pressure exerted by the particles upon the fixed target (and the momentum transferred) is independent of the co-efficient of restitution and friction co-efficient between the particles but are strongly dependent upon the relative density of the particles in the column. There is a mild dependence on the contact stiffness between the particles which controls the elastic deformation of the densified aggregate of particles. In contrast, the momentum transfer to a movable target is strongly sensitive to the mass ratio of column to target. The impact event can be viewed as an inelastic collision between the sand column and the target with an effective co-efficient of restitution between 0 and 0.35 depending upon the relative density of the column. We present a foam analogy where impact of the aggregate of particles can be modelled by the impact of an equivalent foam projectile. The calculations on the equivalent projectile are significantly less intensive computationally and yet give predictions to within 5% of the full discrete particle calculations. They also suggest that "model" materials can be used to simulate the loading by an aggregate of particles within a laboratory setting. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The automated detection of structural elements (e.g., columns and beams) from visual data can be used to facilitate many construction and maintenance applications. The research in this area is under initial investigation. The existing methods solely rely on color and texture information, which makes them unable to identify each structural element if these elements connect each other and are made of the same material. The paper presents a novel method of automated concrete column detection from visual data. The method overcomes the limitation by combining columns’ boundary information with their color and texture cues. It starts from recognizing long vertical lines in an image/video frame through edge detection and Hough transform. The bounding rectangle for each pair of lines is then constructed. When the rectangle resembles the shape of a column and the color and texture contained in the pair of lines are matched with one of the concrete samples in knowledge base, a concrete column surface is assumed to be located. This way, one concrete column in images/videos is detected. The method was tested using real images/videos. The results are compared with the manual detection ones to indicate the method’s validity.