10 resultados para Vermigli, Pietro Martire, 1499-1562.

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A micromachined electrometer, based on the concept of a variable capacitor, has been designed, modeled, fabricated, and tested. The device presented in this paper functions as a modulated variable capacitor, wherein a dc charge to be measured is up-modulated and converted to an ac voltage output, thus improving the signal-to-noise ratio. The device was fabricated in a commercial standard SOI micromachining process without the need for any additional processing steps. The electrometer was tested in both air and vacuum at room temperature. In air, it has a charge-to-voltage conversion gain of 2.06 nV/e, and a measured charge noise floor of 52.4 e/rtHz. To reduce the effects of input leakage current, an electrically isolated capacitor has been introduced between the variable capacitor and input to sensor electronics. Methods to improve the sensitivity and resolution are suggested while the long-term stability of these sensors is modeled and discussed. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop a convex relaxation of maximum a posteriori estimation of a mixture of regression models. Although our relaxation involves a semidefinite matrix variable, we reformulate the problem to eliminate the need for general semidefinite programming. In particular, we provide two reformulations that admit fast algorithms. The first is a max-min spectral reformulation exploiting quasi-Newton descent. The second is a min-min reformulation consisting of fast alternating steps of closed-form updates. We evaluate the methods against Expectation-Maximization in a real problem of motion segmentation from video data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reprocessing of Light Water Reactor (LWR) spent fuel to recover plutonium or transuranics for use in Sodium cooled Fast Reactors (SFRs) is a distant prospect in the U.S.A. This has motivated our evaluation of potentially cost-effective operation of uranium startup fast reactors (USFRs) in a once-through mode. This review goes beyond findings reported earlier based on a UC fueled MgO reflected SFR to describe a broader parametric study of options. Cores were evaluated for a variety of fuel/coolant/reflector combinations: UC/UZr/UO 2/UN;Na/Pb; MgO/SS/Zr. The challenge is achieving high burnup while minimizing enrichment and respecting both cladding fluence/dpa and reactivity lifetime limits. These parametric studies show that while UC fuel is still the leading contender, UO 2 fuel and ZrH 1.7 moderated metallic fuel are also attractive if UC proves to be otherwise inadequate. Overall, these findings support the conclusion that a competitive fuel cycle cost and uranium utilization compared to LWRs is possible for SFRs operated on a once-through uranium fueled fuel cycle. In addition, eventual transition to TRU recycle mode is studied, as is a small test reactor to demonstrate key features.