38 resultados para Vector Space IR, Search Engines, Document Clustering, Document
em Cambridge University Engineering Department Publications Database
Resumo:
Images represent a valuable source of information for the construction industry. Due to technological advancements in digital imaging, the increasing use of digital cameras is leading to an ever-increasing volume of images being stored in construction image databases and thus makes it hard for engineers to retrieve useful information from them. Content-Based Search Engines are tools that utilize the rich image content and apply pattern recognition methods in order to retrieve similar images. In this paper, we illustrate several project management tasks and show how Content-Based Search Engines can facilitate automatic retrieval, and indexing of construction images in image databases.
Resumo:
This paper presents a novel coarse-to-fine global localization approach inspired by object recognition and text retrieval techniques. Harris-Laplace interest points characterized by scale-invariant transformation feature descriptors are used as natural landmarks. They are indexed into two databases: a location vector space model (LVSM) and a location database. The localization process consists of two stages: coarse localization and fine localization. Coarse localization from the LVSM is fast, but not accurate enough, whereas localization from the location database using a voting algorithm is relatively slow, but more accurate. The integration of coarse and fine stages makes fast and reliable localization possible. If necessary, the localization result can be verified by epipolar geometry between the representative view in the database and the view to be localized. In addition, the localization system recovers the position of the camera by essential matrix decomposition. The localization system has been tested in indoor and outdoor environments. The results show that our approach is efficient and reliable. © 2006 IEEE.
Resumo:
Ideally, one would like to perform image search using an intuitive and friendly approach. Many existing image search engines, however, present users with sets of images arranged in some default order on the screen, typically the relevance to a query, only. While this certainly has its advantages, arguably, a more flexible and intuitive way would be to sort images into arbitrary structures such as grids, hierarchies, or spheres so that images that are visually or semantically alike are placed together. This paper focuses on designing such a navigation system for image browsers. This is a challenging task because arbitrary layout structure makes it difficult - if not impossible - to compute cross-similarities between images and structure coordinates, the main ingredient of traditional layouting approaches. For this reason, we resort to a recently developed machine learning technique: kernelized sorting. It is a general technique for matching pairs of objects from different domains without requiring cross-domain similarity measures and hence elegantly allows sorting images into arbitrary structures. Moreover, we extend it so that some images can be preselected for instance forming the tip of the hierarchy allowing to subsequently navigate through the search results in the lower levels in an intuitive way. Copyright 2010 ACM.
Resumo:
This paper studies the coordinated motion of a group of agents evolving on a Lie group. Left-or rightinvariance with respect to the absolute position on the group lead to two different characterizations of relative positions and two associated definitions of coordination (fixed relative positions). Conditions for each type of coordination are derived in the associated Lie algebra. This allows to formulate the coordination problem on Lie groups as consensus in a vector space. Total coordination occurs when both types of coordination hold simultaneously. The discussion in this paper provides a common geometric framework for previously published coordination control laws on SO(3), SE(2) and SE(3). The theory is illustrated on the group of planar rigid motion SE(2). © 2008 IEEE.
Resumo:
The discipline of Artificial Intelligence (AI) was born in the summer of 1956 at Dartmouth College in Hanover, New Hampshire. Half of a century has passed, and AI has turned into an important field whose influence on our daily lives can hardly be overestimated. The original view of intelligence as a computer program - a set of algorithms to process symbols - has led to many useful applications now found in internet search engines, voice recognition software, cars, home appliances, and consumer electronics, but it has not yet contributed significantly to our understanding of natural forms of intelligence. Since the 1980s, AI has expanded into a broader study of the interaction between the body, brain, and environment, and how intelligence emerges from such interaction. This advent of embodiment has provided an entirely new way of thinking that goes well beyond artificial intelligence proper, to include the study of intelligent action in agents other than organisms or robots. For example, it supplies powerful metaphors for viewing corporations, groups of agents, and networked embedded devices as intelligent and adaptive systems acting in highly uncertain and unpredictable environments. In addition to giving us a novel outlook on information technology in general, this broader view of AI also offers unexpected perspectives into how to think about ourselves and the world around us. In this chapter, we briefly review the turbulent history of AI research, point to some of its current trends, and to challenges that the AI of the 21st century will have to face. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
This paper presents some developments in query expansion and document representation of our spoken document retrieval system and shows how various retrieval techniques affect performance for different sets of transcriptions derived from a common speech source. Modifications of the document representation are used, which combine several techniques for query expansion, knowledge-based on one hand and statistics-based on the other. Taken together, these techniques can improve Average Precision by over 19% relative to a system similar to that which we presented at TREC-7. These new experiments have also confirmed that the degradation of Average Precision due to a word error rate (WER) of 25% is quite small (3.7% relative) and can be reduced to almost zero (0.2% relative). The overall improvement of the retrieval system can also be observed for seven different sets of transcriptions from different recognition engines with a WER ranging from 24.8% to 61.5%. We hope to repeat these experiments when larger document collections become available, in order to evaluate the scalability of these techniques.