3 resultados para Upconversion

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photon cutting with efficiencies up to 400% is demonstrated in Erx Y2-x Si2 O7 films grown on Si and its concentration dependence is analyzed. The cutting is the result of cross-energy-transfer processes occurring within a single rare earth (Er3+) acting as both sensitizer and activator. Similarities with upconversion are revealed and possible applications in solar cells are discussed. © 2010 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 °C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N2. Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 1022 cm-3) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid-state dye-sensitized solar cells rely on effective infiltration of a solid-state hole-transporting material into the pores of a nanoporous TiO 2 network to allow for dye regeneration and hole extraction. Using microsecond transient absorption spectroscopy and femtosecond photoluminescence upconversion spectroscopy, the hole-transfer yield from the dye to the hole-transporting material 2,2′,7,7′-tetrakis(N,N-di-p- methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) is shown to rise rapidly with higher pore-filling fractions as the dye-coated pore surface is increasingly covered with hole-transporting material. Once a pore-filling fraction of ≈30% is reached, further increases do not significantly change the hole-transfer yield. Using simple models of infiltration of spiro-OMeTAD into the TiO2 porous network, it is shown that this pore-filling fraction is less than the amount required to cover the dye surface with at least a single layer of hole-transporting material, suggesting that charge diffusion through the dye monolayer network precedes transfer to the hole-transporting material. Comparison of these results with device parameters shows that improvements of the power-conversion efficiency beyond ≈30% pore filling are not caused by a higher hole-transfer yield, but by a higher charge-collection efficiency, which is found to occur in steps. The observed sharp onsets in photocurrent and power-conversion efficiencies with increasing pore-filling fraction correlate well with percolation theory, predicting the points of cohesive pathway formation in successive spiro-OMeTAD layers adhered to the pore walls. From percolation theory it is predicted that, for standard mesoporous TiO2 with 20 nm pore size, the photocurrent should show no further improvement beyond an ≈83% pore-filling fraction. Solid-state dye-sensitized solar cells capable of complete hole transfer with pore-filling fractions as low as ∼30% are demonstrated. Improvements of device efficiencies beyond ∼30% are explained by a stepwise increase in charge-collection efficiency in agreement with percolation theory. Furthermore, it is predicted that, for a 20 nm pore size, the photocurrent reaches a maximum at ∼83% pore-filling fraction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.