10 resultados para Units of measurement.

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of high performance textiles has grown significantly in the last 10 to 15 years. Various research groups throughout the United Kingdom, such as the Department of Trade and Industry, have identified technical textiles as a field for future development. There is little design guidance for joining of flexible materials or general property models that can be applied to theses materials. This lack is due to the large diversity of properties, structures and resulting behaviours of the materials that are classified as "Flexible Materials". This dissertation explores the issues that are involved in characterising the materials at the fibre, bulk and textile levels. Different units of measurement are used for each stage of the manufacturing process of flexible materials and this disparity creates problems when trying to make general comparisons (e.g. comparing textiles to polymer films). Thus, a possible solution to this is to create selection charts that allow designers to compare the strength of materials for a given mass per unit area. A design tool was created using the Cambridge Engineering Selector (CES) software to enable the selection of joining processes for material. The tool is effective in selecting a reduced number of viable joining processes. Through case studies it was shown that designers are required to examine the selected processes (identified by the software) in greater detail - in particular the economics and geometry of the joint - in order to identify the optimum joining process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the measurement and simulation of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed on the rough plates which also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit satisfactory similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. However, the simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several approaches to designing schedule H-infinity control systems are compared. These include a controller switching approach and also parameter scheduling of an observer representation of the controller. They are illustrated by application to a Generic VSTOI. Aircraft Model (GVAM) supplied by The Royal Aerospace Establishment (RAE) at Bedford. The switched design has been tested on the simulator at RAE Bedford. The linear H-infinity designs make use of a loop-shaping followed by robust stabilisation to additive perturbations of a normalised coprime factorisation of the shaped plans. The different scheduling approaches are compared with respect to achieved robust stability levels. performance and complexity of implementation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Effective use of materials is one possible component of a sustainable manufacturing strategy. There are many such strategies proposed in the literature and used in practice, with confusion over what they are, what the differences among them may be and how they can be used by practitioners in design and manufacture to improve the sustainability of their product and processes. This paper reviews the literature on sustainable manufacturing strategies that deliver improved material performance. Four primary strategies were found: waste minimisation; material efficiency; resource efficiency; and eco-efficiency. The literature was analysed to determine the key characteristics of these sustainable manufacturing strategies and 17 characteristics were found. The four strategies were then compared and contrasted against all the characteristics. While current literature often uses these strategy titles in a confusing, occasionally inter-changeable manner, this study attempts to create clear separation between them. Definition, scope and practicality of measurement are shown to be key characteristics that impact upon the ability of manufacturing companies to make effective use of the proposed strategy. It is observed that the most actionable strategies may not include all of the dimensions of interest to a manufacturer wishing to become more sustainable, creating a dilemma between ease of implementation and breadth of impact. © 2008 Taylor & Francis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to better understand the stratified combustion, the propagation of flame through stratified mixture field in laminar and turbulent flow conditions has been studied by using combined PIV/PLIF techniques. A great emphasis was placed on developing methods to improve the accuracy of local measurements of flame propagation. In particular, a new PIV approach has been developed to measure the local fresh gas velocity near preheat zone of flame front. To improve the resolution of measurement, the shape of interrogation window has been continuously modified based on the local flame topology and gas expansion effect. Statistical analysis of conditioned local measurements by the local equivalence ratio of flames allows the characterization of the properties of flame propagation subjected to the mixture stratification in laminar and turbulent flows, especially the highlight of the memory effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The standard design process for the Siemens Industrial Turbomachinery, Lincoln, Dry Low Emissions combustion systems has adopted the Eddy Dissipation Model with Finite Rate Chemistry for reacting computational fluid dynamics simulations. The major drawbacks of this model have been the over-prediction of temperature and lack of species data limiting the applicability of the model. A novel combustion model referred to as the Scalar Dissipation Rate Model has been developed recently based on a flamelet type assumption. Previous attempts to adopt the flamelet philosophy with alternative closure models have failed, with the prediction of unphysical phenomenon. The Scalar Dissipation Rate Model (SDRM) was developed from a physical understanding of scalar dissipation rate, signifying the rate of mixing of hot and cold fluids at scales relevant to sustain combustion, in flames and was validated using direct numerical simulations data and experimental measurements. This paper reports on the first industrial application of the SDRM to SITL DLE combustion system. Previous applications have considered ideally premixed laboratory scale flames. The industrial application differs significantly in the complexity of the geometry, unmixedness and operating pressures. The model was implemented into ANSYS-CFX using their inbuilt command language. Simulations were run transiently using Scale Adaptive Simulation turbulence model, which switches between Large Eddy Simulation and Unsteady Reynolds Averaged Navier Stokes using a blending function. The model was validated in a research SITL DLE combustion system prior to being applied to the actual industrial geometry at real operating conditions. This system consists of the SGT-100 burner with a glass square-sectioned combustor allowing for detailed diagnostics. This paper shows the successful validation of the SDRM against time averaged temperature and velocity within measurement errors. The successful validation allowed application of the SDRM to the SGT-100 twin shaft at the relevant full load conditions. Limited validation data was available due to the complexity of measurement in the real geometry. Comparison of surface temperatures and combustor exit temperature profiles showed an improvement compared to EDM/FRC model. Furthermore, no unphysical phenomena were predicted. This paper presents the successful application of the SDRM to the industrial combustion system. The model shows a marked improvement in the prediction of temperature over the EDM/FRC model previously used. This is of significant importance in the future applications of combustion CFD for understanding of hardware mechanical integrity, combustion emissions and dynamics of the flame. Copyright © 2012 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the experimental study of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed in the rough plates than the smooth plate, and the rough plates also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles over the rigid plate and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit encouraging similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. The simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2007 by Yu Liu and Ann P. Dowling.