2 resultados para Unit-Level

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present the process of designing an efficient speech corpus for the first unit selection speech synthesis system for Bulgarian, along with some significant preliminary results regarding the quality of the resulted system. As the initial corpus is a crucial factor for the quality delivered by the Text-to-Speech system, special effort has been given in designing a complete and efficient corpus for use in a unit selection TTS system. The targeted domain of the TTS system and hence that of the corpus is the news reports, and although it is a restricted one, it is characterized by an unlimited vocabulary. The paper focuses on issues regarding the design of an optimal corpus for such a framework and the ideas on which our approach was based on. A novel multi-stage approach is presented, with special attention given to language and speaker dependent issues, as they affect the entire process. The paper concludes with the presentation of our results and the evaluation experiments, which provide clear evidence of the quality level achieved. © 2011 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing environmental concerns caused by natural resource depletion and pollution need to be addressed. One approach to these problems is Sustainable Development, a key concept for our society to meet present as well as future needs worldwide. Manufacturing clearly has a major role to play in the move towards a more sustainable society. However it appears that basic principles of environmental sustainability are not systematically applied, with practice tending to focus on local improvements. The aim of the work presented in this paper is to adopt a more holistic view of the factory unit to enable opportunities for wider improvement. This research analyses environmental principles and industrial practice to develop a conceptual manufacturing ecosystem model as a foundation to improve environmental performance. The model developed focuses on material, energy and waste flows to better understand the interactions between manufacturing operations, supporting facilities and surrounding buildings. The research was conducted in three steps: (1) existing concepts and models for industrial sustainability were reviewed and environmental practices in manufacturing were collected and analysed; (2) gaps in knowledge and practice were identified; (3) the outcome is a manufacturing ecosystem model based on industrial ecology (IE). This conceptual model has novelty in detailing IE application at factory level and integrating all resource flows. The work is a base on which to build quantitative modelling tools to seek integrated solutions for lower resource input, higher resource productivity, fewer wastes and emissions, and lower operating cost within the boundary of a factory unit. © 2012 Elsevier Ltd. All rights reserved.