15 resultados para UNSATURATED ALCOHOLS

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The movement of chemicals through soil to groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. The study of the effects of different factors involved in transport phenomena can provide valuable information to find the best remediation approaches. Numerical models are increasingly being used for predicting or analyzing solute transport processes in soils and groundwater. This article presents the development of a stochastic finite element model for the simulation of contaminant transport through soils with the main focus being on the incorporation of the effects of soil heterogeneity in the model. The governing equations of contaminant transport are presented. The mathematical framework and the numerical implementation of the model are described. The comparison of the results obtained from the developed stochastic model with those obtained from a deterministic method and some experimental results shows that the stochastic model is capable of predicting the transport of solutes in unsaturated soil with higher accuracy than deterministic one. The importance of the consideration of the effects of soil heterogeneity on contaminant fate is highlighted through a sensitivity analysis regarding the variance of saturated hydraulic conductivity as an index of soil heterogeneity. © 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autoignition characteristics of methanol, ethanol and MTBE (methyl tert-butyl ether) have been investigated in a rapid compression machine at pressures in the range 20-40 atm and temperatures within 750-1000 K. All three oxygenated fuels tested show higher autoignition temperatures than paraffins, a trend consistent with the high octane number of these fuels. The autoignition delay time for methanol was slightly lower than predicted values using reported reaction mechanisms. However, the experimental and measured values for the activation energy are in very good agreement around 44 kcal/mol. The measured activation energy for ethanol autoignition is in good agreement with previous shock tube results (31 kcal/mol), although ignition times predicted by the shock tube correlation are a factor of three lower than the measured values. The measured activation energy for MTBE, 41.4 kcal/mol, was significantly higher than the value previously observed in shock tubes (28.1 kcal/mol). The onset of preignition, characterized by a slow energy release prior to early ignition was observed in some instances. Possible reasons for these ocurrences are discussed. © Copyright 1993 Society of Automotive engineers, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetrahedral amorphous carbon (ta-C) thin films are a promising material for use as biocompatible interfaces in applications such as in-vivo biosensors. However, the functionalization of ta-C film surface, which is a pre-requisite for biosensors, remains a big challenge due to its chemical inertness. We have investigated the bio-functionalization of ta-C films fabricated under specific physical conditions through the covalent attachment of functional biomolecular probes of peptide nucleic acid (PNA) to ta-C films, and the effect of fabrication conditions on the bio-functionalization. The study showed that the functional bimolecular probes such as protected long-chain ω-unsaturated amine (TFAAD) can be covalently attached to the ta-C surface through a well-defined structure. With the given fabrication process, electrochemical methods can be applied to the detection of biomolecular interaction, which establishes the basis for the development of stable, label-free biosensors. © 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrafast charge carrier dynamics in GaAs/conjugated polymer type II heterojunctions are investigated using time-resolved photoluminescence spectroscopy at 10 K. By probing the photoluminescence at the band edge of GaAs, we observe strong carrier lifetime enhancement for nanowires blended with semiconducting polymers. The enhancement is found to depend crucially on the ionization potential of the polymers with respect to the Fermi energy level at the surface of the GaAs nanowires. We attribute these effects to electron doping by the polymer which reduces the unsaturated surface-state density in GaAs. We find that when the surface of nanowires is terminated by native oxide, the electron injection across the interface is greatly reduced and such surface doping is absent. Our results suggest that surface engineering via π-conjugated polymers can substantially improve the carrier lifetime in nanowire hybrid heterojunctions with applications in photovoltaics and nanoscale photodetectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a versatile and cost-effective way of controlling the unsaturated loss, modulation depth and saturation fluence of graphene-based saturable absorbers (GSAs), by changing the thickness of a spacer between SLG and a high-reflection mirror. This allows us to modulate the electric field intensity enhancement at the GSA from 0 up to 400%, due to the interference of incident and reflected light at the mirror. The unsaturated loss of the SLG-mirror-assembly can be reduced to$\sim$0. We use this to mode-lock a VECSEL from 935 to 981nm. This approach can be applied to integrate SLG into various optical components, such as output coupler mirrors, dispersive mirrors, dielectric coatings on gain materials. Conversely, it can also be used to increase absorption (up to 10%) in various graphene based photonics and optoelectronics devices, such as photodetectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new constitutive model called Methane Hydrate Critical State (MHCS) model was conducted to investigate the geomechanical response of the gas-hydrate-bearing sediments at the Nankai Trough during the wellbore construction process. The strength and dilatancy of gas-hydrate-bearing soil would gradually disappear when the bonds are destroyed because of excessively shearing, which are often observed in dense soils and also in bonded soils such as cemented soil and unsaturated soil. In this study, the MHCS model, which presents such softening features, would be incorporated into a staged-finite-element model in ABAQUS, which mainly considered the loading history of soils and the interaction between cement-casing-formation. This model shows the influence of gas-hydrate-bearing soil to the deformation and stability of a wellbore and the surrounding sediments during wellbore construction. At the same time, the conventional Mohr-Coulomb model was used in the model to show the advantages of MHCS model by comparing the results of the two models.