53 resultados para U-shaped slots

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The remodelling of the cytoskeleton and focal adhesion (FA) distributions for cells on substrates with micro-patterned ligand patches is investigated using a bio-chemo-mechanical model. We investigate the effect of ligand pattern shape on the cytoskeletal arrangements and FA distributions for cells having approximately the same area. The cytoskeleton model accounts for the dynamic rearrangement of the actin/myosin stress fibres. It entails the highly nonlinear interactions between signalling, the kinetics of tension-dependent stress-fibre formation/dissolution and stress-dependent contractility. This model is coupled with another model that governs FA formation and accounts for the mechano-sensitivity of the adhesions from thermodynamic considerations. This coupled modelling scheme is shown to capture a variety of key experimental observations including: (i) the formation of high concentrations of stress fibres and FAs at the periphery of circular and triangular, convex-shaped ligand patterns; (ii) the development of high FA concentrations along the edges of the V-, T-, Y- and U-shaped concave ligand patterns; and (iii) the formation of highly aligned stress fibres along the non-adhered edges of cells on the concave ligand patterns. When appropriately calibrated, the model also accurately predicts the radii of curvature of the non-adhered edges of cells on the concave-shaped ligand patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.