15 resultados para Type C Phospholipases

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Campylobacter jejuni is a prevalent cause of food-borne diarrhoeal illness in humans. Understanding of the physiological and metabolic capabilities of the organism is limited. We report a detailed analysis of the C. jejuni growth cycle in batch culture. Combined transcriptomic, phenotypic and metabolic analysis demonstrates a highly dynamic 'stationary phase', characterized by a peak in motility, numerous gene expression changes and substrate switching, despite transcript changes that indicate a metabolic downshift upon the onset of stationary phase. Video tracking of bacterial motility identifies peak activity during stationary phase. Amino acid analysis of culture supernatants shows a preferential order of amino acid utilization. Proton NMR (1H-NMR) highlights an acetate switch mechanism whereby bacteria change from acetate excretion to acetate uptake, most probably in response to depletion of other substrates. Acetate production requires pta (Cj0688) and ackA (Cj0689), although the acs homologue (Cj1537c) is not required. Insertion mutants in Cj0688 and Cj0689 maintain viability less well during the stationary and decline phases of the growth cycle than wild-type C. jejuni, suggesting that these genes, and the acetate pathway, are important for survival.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p-n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled amount of oxygen, can produce good quality p-type transparent Cu2O films with electrical resistivity ranging from 102 to 104 Ω-cm, hole mobility of 1-10 cm2/V-s, and optical band-gap of 2.0-2.6 eV. These material properties make this low temperature deposited HiTUS Cu 2O film suitable for fabrication of p-type metal oxide thin film transistors. Furthermore, the capability to deposit Cu2O films with low film stress at low temperatures on plastic substrates renders this approach favourable for fabrication of flexible p-n junction solar cells. © 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is estimated that the adult human brain contains 100 billion neurons with 5-10 times as many astrocytes. Although it has been generally considered that the astrocyte is a simple supportive cell to the neuron, recent research has revealed new functionality of the astrocyte in the form of information transfer to neurons of the brain. In our previous work we developed a protocol to pattern the hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO(2) substrates. In this work, we report how we have managed to pattern hNT astrocytes, on parylene-C/SiO(2) substrates to single cell resolution. This article disseminates the nanofabrication and cell culturing steps necessary for the patterning of such cells. In addition, it reports the necessary strip lengths and strip width dimensions of parylene-C that encourage high degrees of cellular coverage and single cell isolation for this cell type. The significance in patterning the hNT astrocyte on silicon chip is that it will help enable single cell and network studies into the undiscovered functionality of this interesting cell, thus, contributing to closer pathological studies of the human brain.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Pd-contacted dopant-free CNTFET with small-diameter (0.57 nm) carbon nanotube showing an anomalous n-type electrical characteristic is reported for the first time. This observed behaviour is attributed to a carbon nanotube work function higher than (or close to) palladium as well as a large hole-to-electron effective mass ratio of approximately 2.5 predicted by hybridization in small-diameter nanotubes. A variation of the conduction type with temperature is also observed and is attributed to an increase of the palladium work function and decrease of the CNT work function with increasing temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a variation of the thermally actuated flux pump and the linear type magnetic flux pump (LTMFP), the circular type magnetic flux pump (CTMFP) device is proposed to magnetize a circular shape type-II superconducting thin film and bulk. The basic concept is the same as the thermally actuated flux pump: a circularly symmetric traveling magnetic field is generated below a circular shape superconductor to increase its trapping field. However, this traveling field is created by the three phase windings instead of heating gadolinium block. Apart from the LTMFP, the three phase windings are wound concentrically instead of linearly. The speed of the traveling field is controlled by the AC frequency and the magnitude of the field is controlled by the magnitudes of AC currents. In addition, a coil with DC current is wound around the three phase windings to provide a background field. The concept design is presented in this paper. The magnetic waveforms are analysed numerically by the COMSOL 3.5a software. The impedances of the three phase windings are calculated and a corresponding circuit design is presented. This rig can be used as an advanced tool to study the flux pump behavior of a circular shape superconductor. © 2002-2011 IEEE.