6 resultados para Tsuji hydrogenolysis
em Cambridge University Engineering Department Publications Database
Resumo:
Carbon nanotube (CNT) emitters were formed on line-patterned cathodes in microtrenches through a thermal CVD process. Single-walled carbon nanotubes (SWCNTs) self-organized along the trench lines with a submicron inter-CNT spacing. Excellent field emission (FE) properties were obtained: current densities at the anode (J(a)) of 1 microA cm(-2), 10 mA cm(-2) and 100 mA cm(-2) were recorded at gate voltages (V(g)) of 16, 25 and 36 V, respectively. The required voltage difference to gain a 1:10 000 contrast of the anode current was as low as 9 V, indicating that a very low operating voltage is possible for these devices. Not only a large number of emission sites but also the optimal combination of trench structure and emitter morphology are crucial to achieve the full FE potential of thin CNTs with a practical lifetime. The FE properties of 1D arrays of CNT emitters and their optimal design are discussed. Self-organization of thin CNTs is an attractive prospect to tailor preferable emitter designs in FE devices.
Resumo:
Field emission properties of single-walled carbon nanotubes (SWCNTs), which were prepared through alcohol catalytic chemical vapor deposition for 10-60s, were characterized in a diode configuration. Protrusive bundles at the top surface of samples act selectively as emission sites. The number of emission sites was controlled by emitter morphologies combined with texturing of Si substrates. SWCNTs grown on a textured Si substrate exhibited a turn-on field as low as 2.4 V/μm at a field emission current density of 1 μA/cm 2. Uniform spatial luminescence (0.5 cm2) from the rear surface of the anode was revealed for SWCNTs prepared on the textured Si substrate. Deterioration of field emission properties through repetitive measurements was reduced for the textured samples in comparison with vertically aligned SWCNTs and a random network of SWCNTs prepared on flat Si substrates. Emitter morphology resulting in improved field emission properties is a crucial factor for the fabrication of SWCNT-electron sources. Morphologically controlled SWCNTs with promising emitter performance are expected to be practical electron sources. © 2008 The Japan Society of Applied Physics.
Resumo:
In addition to the structural control of individual carbon nanotubes (CNTs), the morphological control of their assemblies is crucial to realize miniaturized CNT devices. Microgradients in the thickness of catalyst are used to enrich the variety of available self-organized morphologies of CNTs. Microtrenches were fabricated in gate/spacer/cathode trilayers using a conventional self-aligned top-down process and catalyst exhibiting a microgradient in its thickness was formed on the cathode by sputter deposition through gate slits. CNTs, including single-walled CNTs, of up to 1μm in length were grown within 5-15 s by chemical vapor deposition. The tendency of thin CNTs to aggregate caused interactions between CNTs with different growth rates, yielding various morphologies dependent on the thickness of the catalyst. The field emission properties of several types of CNT assemblies were evaluated. The ability to produce CNTs with tailored morphologies by engineering the spatial distribution of catalysts will enhance their performance in devices. © 2011 The Japan Society of Applied Physics.