4 resultados para Trees and shrubs.
em Cambridge University Engineering Department Publications Database
Resumo:
Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian non-parametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian non-parametrics. The survey covers the use of Bayesian non-parametrics for modelling unknown functions, density estimation, clustering, time-series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically, it gives brief non-technical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman's coalescent, Dirichlet diffusion trees and Wishart processes.
Resumo:
Deciding which technology to invest in is a recurring issue for technology managers, and the ability to successfully identify the right technology can be a make or break decision for a company. The effects of globalisation have made this issue even more imperative. Not only do companies have to be competitive by global standards but increasingly they have to source technological capabilities from overseas as well. Technology managers already have a variety of decision aids to draw upon, including valuation tools, for example DCF and real options; decision trees; and technology roadmapping. However little theory exists on when, where, why or even how to best apply particular decision aids. Rather than developing further techniques, this paper reviews the relevance and limitations of existing techniques. This is drawn from an on going research project which seeks to support technology managers in selecting and applying existing decision aids and potentially in the design of future decision aids. It is intended that through improving the selection of decision aids, decision performance can be increased, leading to more effective allocation of resources and hence competitive advantage. (c) 2006 PICMET.