43 resultados para Transportation - planning

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The route planning problem for an order in freight transportation involves the selection of the best route for its transportation given a set of options that the network can offer. In its adaptive (or dynamic) version, the problem deals with the planning of a new route for an order while it is actually in transit typically because part or all of its pre-selected route is blocked or disrupted. In the intelligent product approach we are proposing, an order would be capable of identifying and evaluating such new routes in an automated manner and choosing the most preferable one without the intervention of humans. Because such approaches seek to mirror (and then automate) human decision making, in this paper we seek to identify new ways for dynamic route planning in industrial logistics inspired by the way people make similar decisions about their journey when they travel in multi-modal networks. We propose a new simulation game as a methodological tool for capturing their travel behaviour and we use it in this study. The results show that a simulation game can be used for capturing strategies and tactics of travellers and that intelligent products can provide a proper platform for the usage of such strategies in freight logistics. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensor scheduling problem can be formulated as a controlled hidden Markov model and this paper solves the problem when the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. The aim is to minimise the variance of the estimation error of the hidden state w.r.t. the action sequence. We present a novel simulation-based method that uses a stochastic gradient algorithm to find optimal actions. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contaminant behaviour in soils and fractured rock is very complex, not least because of the heterogeneity of the subsurface environment. For non-aqueous phase liquids (NAPLs), a liquid density contrast and interfacial tension between the contaminant and interstitial fluid adds to the complexity of behaviour, increasing the difficulty of predicting NAPL behaviour in the subsurface. This paper outlines the need for physical model tests that can improve fundamental understanding of NAPL behaviour in the subsurface, enhance risk assessments of NAPL contaminated sites, reduce uncertainty associated with NAPL source remediation and improve current technologies for NAPL plume remediation. Four case histories are presented to illustrate physical modelling approaches that have addressed problems associated with NAPL transport, remediation and source zone characterization. © 2006 Taylor & Francis Group, London.