4 resultados para Transitive Inferences
em Cambridge University Engineering Department Publications Database
Resumo:
Uncertainty is ubiquitous in our sensorimotor interactions, arising from factors such as sensory and motor noise and ambiguity about the environment. Setting it apart from previous theories, a quintessential property of the Bayesian framework for making inference about the state of world so as to select actions, is the requirement to represent the uncertainty associated with inferences in the form of probability distributions. In the context of sensorimotor control and learning, the Bayesian framework suggests that to respond optimally to environmental stimuli the central nervous system needs to construct estimates of the sensorimotor transformations, in the form of internal models, as well as represent the structure of the uncertainty in the inputs, outputs and in the transformations themselves. Here we review Bayesian inference and learning models that have been successful in demonstrating the sensitivity of the sensorimotor system to different forms of uncertainty as well as recent studies aimed at characterizing the representation of the uncertainty at different computational levels.
Resumo:
Building on recent developments in mixed methods, we discuss the methodological implications of critical realism and explore how these can guide dynamic mixed-methods research design in information systems. Specifically, we examine the core ontological assumptions of CR in order to gain some perspective on key epistemological issues such as causation and validity, and illustrate how these shape our logic of inference in the research process through what is known as retroduction. We demonstrate the value of a CR-led mixed-methods research approach by drawing on a study that examines the impact of ICT adoption in the financial services sector. In doing so, we provide insight into the interplay between qualitative and quantitative methods and the particular value of applying mixed methods guided by CR methodological principles. Our positioning of demi-regularities within the process of retroduction contributes a distinctive development in this regard. We argue that such a research design enables us to better address issues of validity and the development of more robust meta-inferences.
Resumo:
Humans have the arguably unique ability to understand the mental representations of others. For success in both competitive and cooperative interactions, however, this ability must be extended to include representations of others' belief about our intentions, their model about our belief about their intentions, and so on. We developed a "stag hunt" game in which human subjects interacted with a computerized agent using different degrees of sophistication (recursive inferences) and applied an ecologically valid computational model of dynamic belief inference. We show that rostral medial prefrontal (paracingulate) cortex, a brain region consistently identified in psychological tasks requiring mentalizing, has a specific role in encoding the uncertainty of inference about the other's strategy. In contrast, dorsolateral prefrontal cortex encodes the depth of recursion of the strategy being used, an index of executive sophistication. These findings reveal putative computational representations within prefrontal cortex regions, supporting the maintenance of cooperation in complex social decision making.
Resumo:
Mathematical theorems in control theory are only of interest in so far as their assumptions relate to practical situations. The space of systems with transfer functions in ℋ∞, for example, has many advantages mathematically, but includes large classes of non-physical systems, and one must be careful in drawing inferences from results in that setting. Similarly, the graph topology has long been known to be the weakest, or coarsest, topology in which (1) feedback stability is a robust property (i.e. preserved in small neighbourhoods) and (2) the map from open-to-closed-loop transfer functions is continuous. However, it is not known whether continuity is a necessary part of this statement, or only required for the existing proofs. It is entirely possible that the answer depends on the underlying classes of systems used. The class of systems we concern ourselves with here is the set of systems that can be approximated, in the graph topology, by real rational transfer function matrices. That is, lumped parameter models, or those distributed systems for which it makes sense to use finite element methods. This is precisely the set of systems that have continuous frequency responses in the extended complex plane. For this class, we show that there is indeed a weaker topology; in which feedback stability is robust but for which the maps from open-to-closed-loop transfer functions are not necessarily continuous. © 2013 Copyright Taylor and Francis Group, LLC.