16 resultados para Transceivers.

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed investigations of the effectiveness of three widely adopted optical orthogonal frequency division multiplexing (OOFDM) adaptive loading algorithms, including power loading (PL), bit loading (BL), and bit-and-power loading (BPL), are undertaken, over < 100km single-mode fibre (SMF) system without incorporating inline optical amplification and chromatic dispersion (CD) compensation. It is shown that the BPL (PL) algorithm always offers the best (worst) transmission performance. The absolute transmission capacity differences between these algorithms are independent of transmission distance and launched optical power. Moreover, it is shown that in comparison with the most sophisticated BPL algorithm, the simplest PL algorithm is effective in escalating the OOFDM SMF links performance to its maximum potential. On the other hand, when employing a large number of subcarriers and a high digital-to-analogue DAC)/analogue-to-digital (ADC) sampling rate, the sophisticated BPL algorithm has to be adopted. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent real-time optical OFDM (OOFDM) research progress is reviewed extensively in terms of adaptive transceiver design, intensity modulators, synchronisation techniques and network architectures. Results indicate that OOFDM is feasible for mass deployment in PONs. © 2011 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and -0.2dB at a BER of 1.0 x 10(-3) in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals converted using reflective semiconductor optical amplifiers (RSOAs) are undertaken over intensity-modulation and direct-detection (IMDD) single-mode fiber (SMF) transmission systems for WDM-PONs. The theoretical RSOA model adopted for modulating the AMOOFDM signals is experimentally verified rigorously in the aforementioned transmission systems incorporating recently developed real-time end-to-end OOFDM transceivers. Extensive performance comparisons are also made between RSOA and SOA intensity modulators. Optimum RSOA operating conditions are identified, which are independent of RSOA rear-facet reflectivity and very similar to those corresponding to SOAs. Under the identified optimum operating conditions, the RSOA and SOA intensity modulators support the identical AMOOFDM transmission performance of 30Gb/s over 60km SMFs. Under low-cost optical component-enabled practical operating conditions, RSOA intensity modulators with rear-facet reflectivity values of >0.3 outperform considerably SOA intensity modulators in transmission performance, which decreases significantly with reducing RSOA rear-facet reflectivity and optical input power. In addition, results also show that use can be made of the RSOA/SOA intensity modulation-induced negative frequency chirp to improve the AMOOFDM transmission performance in IMDD SMF systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of utilising low-cost, un-cooled vertical cavity surface-emitting lasers (VCSELs) as intensity modulators in real-time optical OFDM (OOFDM) transceivers is experimentally explored, for the first time, in terms of achievable signal bit rates, physical mechanisms limiting the transceiver performance and performance robustness. End-to-end real-time transmission of 11.25 Gb/s 64-QAM-encoded OOFDM signals over simple intensity modulation and direct detection, 25 km SSMF PON systems is experimentally demonstrated with a power penalty of 0.5 dB. The low extinction ratio of the VCSEL intensity-modulated OOFDM signal is identified to be the dominant factor determining the maximum obtainable transmission performance. Experimental investigations indicate that, in addition to the enhanced transceiver performance, adaptive power loading can also significantly improve the system performance robustness to variations in VCSEL operating conditions. As a direct result, the aforementioned capacity versus reach performance is still retained over a wide VCSEL bias (driving) current (voltage) range of 4.5 mA to 9 mA (275 mVpp to 320 mVpp). This work is of great value as it demonstrates the possibility of future mass production of cost-effective OOFDM transceivers for PON applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

7.5Gb/s real-time end-to-end optical OFDM (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally, for the first time, using a live-optimized RSOA intensity modulator having a modulation bandwidth as narrow as 1GHz. Colourless real-time 16-QAM-encoded OOFDM signal transmission at 7.5Gb/s over 25km SSMF is achieved across the C-band in simple IMDD systems without in-line optical amplification and dispersion compensation. Copyright © 2010 The authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 7.5-Gb/s real-time end-to-end optical orthogonal frequency-division- multiplexing (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally using a live-optimized reflective semiconductor optical amplifier intensity modulator having a modulation bandwidth as narrow as 1 GHz. Real-time OOFDM signal transmission at 7.5 Gb/s over 25-km standard single-mode fiber is achieved across the $C$-band in simple intensity modulation and direct detection systems without in-line optical amplification and dispersion compensation. © 2006 IEEE.