19 resultados para Training data
em Cambridge University Engineering Department Publications Database
Resumo:
A significant cost in obtaining acoustic training data is the generation of accurate transcriptions. For some sources close-caption data is available. This allows the use of lightly-supervised training techniques. However, for some sources and languages close-caption is not available. In these cases unsupervised training techniques must be used. This paper examines the use of unsupervised techniques for discriminative training. In unsupervised training automatic transcriptions from a recognition system are used for training. As these transcriptions may be errorful data selection may be useful. Two forms of selection are described, one to remove non-target language shows, the other to remove segments with low confidence. Experiments were carried out on a Mandarin transcriptions task. Two types of test data were considered, Broadcast News (BN) and Broadcast Conversations (BC). Results show that the gains from unsupervised discriminative training are highly dependent on the accuracy of the automatic transcriptions. © 2007 IEEE.
Resumo:
Vector Taylor Series (VTS) model based compensation is a powerful approach for noise robust speech recognition. An important extension to this approach is VTS adaptive training (VAT), which allows canonical models to be estimated on diverse noise-degraded training data. These canonical model can be estimated using EM-based approaches, allowing simple extensions to discriminative VAT (DVAT). However to ensure a diagonal corrupted speech covariance matrix the Jacobian (loading matrix) relating the noise and clean speech is diagonalised. In this work an approach for yielding optimal diagonal loading matrices based on minimising the expected KL-divergence between the diagonal loading matrix and "correct" distributions is proposed. The performance of DVAT using the standard and optimal diagonalisation was evaluated on both in-car collected data and the Aurora4 task. © 2012 IEEE.
Resumo:
This paper discusses the development of the CU-HTK Mandarin Broadcast News (BN) transcription system. The Mandarin BN task includes a significant amount of English data. Hence techniques have been investigated to allow the same system to handle both Mandarin and English by augmenting the Mandarin training sets with English acoustic and language model training data. A range of acoustic models were built including models based on Gaussianised features, speaker adaptive training and feature-space MPE. A multi-branch system architecture is described in which multiple acoustic model types, alternate phone sets and segmentations can be used in a system combination framework to generate the final output. The final system shows state-of-the-art performance over a range of test sets. ©2006 British Crown Copyright.
Resumo:
One important issue in designing state-of-the-art LVCSR systems is the choice of acoustic units. Context dependent (CD) phones remain the dominant form of acoustic units. They can capture the co-articulatory effect in speech via explicit modelling. However, for other more complicated phonological processes, they rely on the implicit modelling ability of the underlying statistical models. Alternatively, it is possible to construct acoustic models based on higher level linguistic units, for example, syllables, to explicitly capture these complex patterns. When sufficient training data is available, this approach may show an advantage over implicit acoustic modelling. In this paper a wide range of acoustic units are investigated to improve LVCSR system performance. Significant error rate gains up to 7.1% relative (0.8% abs.) were obtained on a state-of-the-art Mandarin Chinese broadcast audio recognition task using word and syllable position dependent triphone and quinphone models. © 2011 IEEE.
Resumo:
We present a new haplotype-based approach for inferring local genetic ancestry of individuals in an admixed population. Most existing approaches for local ancestry estimation ignore the latent genetic relatedness between ancestral populations and treat them as independent. In this article, we exploit such information by building an inheritance model that describes both the ancestral populations and the admixed population jointly in a unified framework. Based on an assumption that the common hypothetical founder haplotypes give rise to both the ancestral and the admixed population haplotypes, we employ an infinite hidden Markov model to characterize each ancestral population and further extend it to generate the admixed population. Through an effective utilization of the population structural information under a principled nonparametric Bayesian framework, the resulting model is significantly less sensitive to the choice and the amount of training data for ancestral populations than state-of-the-art algorithms. We also improve the robustness under deviation from common modeling assumptions by incorporating population-specific scale parameters that allow variable recombination rates in different populations. Our method is applicable to an admixed population from an arbitrary number of ancestral populations and also performs competitively in terms of spurious ancestry proportions under a general multiway admixture assumption. We validate the proposed method by simulation under various admixing scenarios and present empirical analysis results from a worldwide-distributed dataset from the Human Genome Diversity Project.
Resumo:
This paper extends n-gram graphone model pronunciation generation to use a mixture of such models. This technique is useful when pronunciation data is for a specific variant (or set of variants) of a language, such as for a dialect, and only a small amount of pronunciation dictionary training data for that specific variant is available. The performance of the interpolated n-gram graphone model is evaluated on Arabic phonetic pronunciation generation for words that can't be handled by the Buckwalter Morphological Analyser. The pronunciations produced are also used to train an Arabic broadcast audio speech recognition system. In both cases the interpolated graphone model leads to improved performance. Copyright © 2011 ISCA.
Resumo:
Language models (LMs) are often constructed by building multiple individual component models that are combined using context independent interpolation weights. By tuning these weights, using either perplexity or discriminative approaches, it is possible to adapt LMs to a particular task. This paper investigates the use of context dependent weighting in both interpolation and test-time adaptation of language models. Depending on the previous word contexts, a discrete history weighting function is used to adjust the contribution from each component model. As this dramatically increases the number of parameters to estimate, robust weight estimation schemes are required. Several approaches are described in this paper. The first approach is based on MAP estimation where interpolation weights of lower order contexts are used as smoothing priors. The second approach uses training data to ensure robust estimation of LM interpolation weights. This can also serve as a smoothing prior for MAP adaptation. A normalized perplexity metric is proposed to handle the bias of the standard perplexity criterion to corpus size. A range of schemes to combine weight information obtained from training data and test data hypotheses are also proposed to improve robustness during context dependent LM adaptation. In addition, a minimum Bayes' risk (MBR) based discriminative training scheme is also proposed. An efficient weighted finite state transducer (WFST) decoding algorithm for context dependent interpolation is also presented. The proposed technique was evaluated using a state-of-the-art Mandarin Chinese broadcast speech transcription task. Character error rate (CER) reductions up to 7.3 relative were obtained as well as consistent perplexity improvements. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP) scheme to atomistic modelling of tungsten - a bcc transition metal which exhibits a brittle-to-ductile transition and whose plasticity behaviour is controlled by the properties of $\frac{1}{2} \langle 111 \rangle$ screw dislocations. We apply Gaussian process regression to interpolate the quantum-mechanical (QM) potential energy surface from a set of points in atomic configuration space. Our training data is based on QM information that is computed directly using density functional theory (DFT). To perform the fitting, we represent atomic environments using a set of rotationally, permutationally and reflection invariant parameters which act as the independent variables in our equations of non-parametric, non-linear regression. We develop a protocol for generating GAP models capable of describing lattice defects in metals by building a series of interatomic potentials for tungsten. We then demonstrate that a GAP potential based on a Smooth Overlap of Atomic Positions (SOAP) covariance function provides a description of the $\frac{1}{2} \langle 111 \rangle$ screw dislocation that is in agreement with the DFT model. We use this potential to simulate the mobility of $\frac{1}{2} \langle 111 \rangle$ screw dislocations by computing the Peierls barrier and model dislocation-vacancy interactions to QM accuracy in a system containing more than 100,000 atoms.
Resumo:
Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.
Resumo:
This paper investigates several approaches to bootstrapping a new spoken language understanding (SLU) component in a target language given a large dataset of semantically-annotated utterances in some other source language. The aim is to reduce the cost associated with porting a spoken dialogue system from one language to another by minimising the amount of data required in the target language. Since word-level semantic annotations are costly, Semantic Tuple Classifiers (STCs) are used in conjunction with statistical machine translation models both of which are trained from unaligned data to further reduce development time. The paper presents experiments in which a French SLU component in the tourist information domain is bootstrapped from English data. Results show that training STCs on automatically translated data produced the best performance for predicting the utterance's dialogue act type, however individual slot/value pairs are best predicted by training STCs on the source language and using them to decode translated utterances. © 2010 ISCA.