10 resultados para Tractor slippage

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a path-following steering control strategy for an articulated heavy goods vehicle. The controller steers the axles of the semi-trailer so that its rear end follows the path of the fifth wheel coupling: for all paths and all speeds. This substantially improves low-speed manoeuvrability, off-tracking, and tyre scrubbing (wear). It also increases high-speed stability, reduces 'rearward amplification', and reduces the propensity to roll over in high-speed transient manoeuvres. The design of a novel experimental heavy goods vehicle with three independent hydraulically actuated steering axles is presented. The path-following controller is tested on the experimental vehicle, at low and high speeds. The field test results are compared with vehicle simulations and found to agree well. The benefits of this steering control approach are quantified. In a low-speed 'roundabout' manoeuvre, low-speed off-tracking was reduced by 73 per cent, from 4.25 m for a conventional vehicle to 1.15 m for the experimental vehicle; swept-path width was reduced by 2 m (28 per cent); peak scrubbing tyre forces were reduced by 83 per cent; and entry tail-swing was eliminated. In an 80 km/h lane-change manoeuvre, peak path error for the experimental vehicle was 33 per cent less than for the conventional vehicle, and rearward amplification of the trailer was 35 per cent less. Increasing the bandwidth of the steering actuators improved the high-speed dynamic performance of the vehicle, but at the expense of increased oil flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reliability of the measuring devices is very important problem. Optical fibre sensors are very efficient. The use of optical fibre sensors for monitoring the physical and chemical parameters has been expanding over resent years. These sensors are applied for monitoring the structural integrity of long, parallel lay synthetic ropes. Such ropes are corrosion free, however, their operational lifetime under cyclic load is not well understood and premature failure can occur due to slippage and breakage of yarns within the rope. The monitoring system has been proposed which is based on acoustic detection of yarn breakage. Monitoring the strain and temperature is performed using the array of fibre gratings distributed along the rope length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new experimental articulated vehicle with computer-controlled suspensions is used to investigate the benefits of active roll control for heavy vehicles. The mechanical hardware, the instrumentation, and the distributed control architecture are detailed. A simple roll-plane model is developed and validated against experimental data, and used to design a controller based on lateral acceleration feedback. The controller is implemented and tested on the experimental vehicle. By tilting both the tractor drive axle and the trailer inwards, substantial reductions in normalized lateral load transfer are obtained, both in steady state and transient conditions. Power requirements are also considered. © IMechE 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical model is developed to predict the energy consumption of a heavy vehicle. It includes the important factors of heavy-vehicle energy consumption, namely engine and drivetrain performances, losses due to accessories, aerodynamic drag, rolling resistance, road gradients, and driver behaviour. Novel low-cost testing methods were developed to determine engine and drivetrain characteristics. A simple drive cycle was used to validate the model. The model is able to predict the fuel use for a 371 tractor-semitrailer vehicle over a 4 km drive cycle within 1 per cent. This paper demonstrates that accurate and reliable vehicle benchmarking and model parameter measurement can be achieved without expensive equipment overheads, e.g. engine and chassis dynamometers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a 'command steer' control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, 'active' steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range. © VC 2013 by ASME.