5 resultados para Touchscreen

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Existing devices for communicating information to computers are bulky, slow to use, or unreliable. Dasher is a new interface incorporating language modelling and driven by continuous two-dimensional gestures, e.g. a mouse, touchscreen, or eye-tracker. Tests have shown that this device can be used to enter text at a rate of up to 34 words per minute, compared with typical ten-finger keyboard typing of 40-60 words per minute. Although the interface is slower than a conventional keyboard, it is small and simple, and could be used on personal data assistants and by motion-impaired computer users.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dasher is an information-efficient text-entry interface, which can be driven by natural continuous pointing gestures or by pressing buttons. Dasher is a competitive text-entry system wherever a full-size keyboard cannot be used - for example, when operating a computer one-handed, by joystick, touchscreen, trackball, or mouse; when operating a computer with zero hands (i.e., by head-mouse or by eyetracker); on a palmtop computer; on a wearable computer. The gazetracking version of Dasher allows an experienced user to write text as fast as normal handwriting - 29 words per minute; using a mouse, experienced users can write at 39 words per minute. Dasher can be used to write efficiently in any language. Dasher is free software (distributed under the GPL) and is available for many computer platforms, including linux, windows, and android.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Users’ initial perceptions of their competence are key motivational factors for further use. However, initial tasks on a mobile operating system (OS) require setup procedures, which are currently largely inconsistent, do not provide users with clear, visible and immediate feedback on their actions, and require significant adjustment time for first-time users. This paper reports on a study with ten users, carried out to better understand how both prior experience and initial interaction with two touchscreen mobile interfaces (Apple iOS and Google Android) affected setup task performance and motivation. The results show that the reactions to setup on mobile interfaces appear to be partially dependent on which device was experienced first. Initial experience with lower-complexity devices improves performance on higher-complexity devices, but not vice versa. Based on these results, the paper proposes six guidelines for designers to design more intuitive and motivating user interfaces (UI) for setup procedures. The preliminary results indicate that these guidelines can contribute to the design of more inclusive mobile platforms and further work to validate these findings is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Touchscreen devices are often limited by the complexity of their user interface design. In the past, iterative design processes using representative user groups to test prototypes were the standard method for increasing the inclusivity of a given design, but cognitive modeling has potential to be an alternative to rigorous user testing. However, these modeling approaches currently have many limitations, some of which are based on the assumptions made in translating a User Interface (UI) into a definition file that cognitive modeling frameworks can process. This paper discusses these issues and postulates potential approaches to improvements to the translation procedure. © 2013 Springer-Verlag Berlin Heidelberg.