23 resultados para Total-energy calculations
em Cambridge University Engineering Department Publications Database
Resumo:
Targets to cut 2050 CO2 emissions in the steel and aluminium sectors by 50%, whilst demand is expected to double, cannot be met by energy efficiency measures alone, so options that reduce total demand for liquid metal production must also be considered. Such reductions could occur through reduced demand for final goods (for instance by life extension), reduced demand for material use in each product (for instance by lightweight design) or reduced demand for material to make existing products. The last option, improving the yield of manufacturing processes from liquid metal to final product, is attractive in being invisible to the final customer, but has had little attention to date. Accordingly this paper aims to provide an estimate of the potential to make existing products with less liquid metal production. Yield ratios have been measured for five case study products, through a series of detailed factory visits, along each supply chain. The results of these studies, presented on graphs of cumulative energy against yield, demonstrate how the embodied energy in final products may be up to 15 times greater than the energy required to make liquid metal, due to yield losses. A top-down evaluation of the global flows of steel and aluminium showed that 26% of liquid steel and 41% of liquid aluminium produced does not make it into final products, but is diverted as process scrap and recycled. Reducing scrap substitutes production by recycling and could reduce total energy use by 17% and 6% and total CO 2 emissions by 16% and 7% for the steel and aluminium industries respectively, using forming and fabrication energy values from the case studies. The abatement potential of process scrap elimination is similar in magnitude to worldwide implementation of best available standards of energy efficiency and demonstrates how decreasing the recycled content may sometimes result in emission reductions. Evidence from the case studies suggests that whilst most companies are aware of their own yield ratios, few, if any, are fully aware of cumulative losses along their whole supply chain. Addressing yield losses requires this awareness to motivate collaborative approaches to improvement. © 2011 Elsevier B.V. All rights reserved.
Resumo:
We present reaction free energy calculations using the adaptive buffered force mixing quantum mechanics/molecular mechanics (bf-QM/MM) method. The bf-QM/MM method combines nonadaptive electrostatic embedding QM/MM calculations with extended and reduced QM regions to calculate accurate forces on all atoms, which can be used in free energy calculation methods that require only the forces and not the energy. We calculate the free energy profiles of two reactions in aqueous solution: the nucleophilic substitution reaction of methyl chloride with a chloride anion and the deprotonation reaction of the tyrosine side chain. We validate the bf-QM/MM method against a full QM simulation, and show that it correctly reproduces both geometrical properties and free energy profiles of the QM model, while the electrostatic embedding QM/MM method using a static QM region comprising only the solute is unable to do so. The bf-QM/MM method is not explicitly dependent on the details of the QM and MM methods, so long as it is possible to compute QM forces in a small region and MM forces in the rest of the system, as in a conventional QM/MM calculation. It is simple, with only a few parameters needed to control the QM calculation sizes, and allows (but does not require) a varying and adapting QM region which is necessary for simulating solutions.
Resumo:
Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for cluster, solid, and liquid forms of water. Recent work has stressed the importance of DFT errors in describing dispersion, but we note that errors in other parts of the energy may also contribute. We obtain information about the nature of DFT errors by using a many-body separation of the total energy into its 1-body, 2-body, and beyond-2-body components to analyze the deficiencies of the popular PBE and BLYP approximations for the energetics of water clusters and ice structures. The errors of these approximations are computed by using accurate benchmark energies from the coupled-cluster technique of molecular quantum chemistry and from quantum Monte Carlo calculations. The systems studied are isomers of the water hexamer cluster, the crystal structures Ih, II, XV, and VIII of ice, and two clusters extracted from ice VIII. For the binding energies of these systems, we use the machine-learning technique of Gaussian Approximation Potentials to correct successively for 1-body and 2-body errors of the DFT approximations. We find that even after correction for these errors, substantial beyond-2-body errors remain. The characteristics of the 2-body and beyond-2-body errors of PBE are completely different from those of BLYP, but the errors of both approximations disfavor the close approach of non-hydrogen-bonded monomers. We note the possible relevance of our findings to the understanding of liquid water.
Resumo:
One of the main claims of the nonparametric model of random uncertainty introduced by Soize (2000) [3] is its ability to account for model uncertainty. The present paper investigates this claim by examining the statistics of natural frequencies, total energy and underlying dispersion equation yielded by the nonparametric approach for two simple systems: a thin plate in bending and a one-dimensional finite periodic massspring chain. Results for the plate show that the average modal density and the underlying dispersion equation of the structure are gradually and systematically altered with increasing uncertainty. The findings for the massspring chain corroborate the findings for the plate and show that the remote coupling of nonadjacent degrees of freedom induced by the approach suppresses the phenomenon of mode localization. This remote coupling also leads to an instantaneous response of all points in the chain when one mass is excited. In the light of these results, it is argued that the nonparametric approach can deal with a certain type of model uncertainty, in this case the presence of unknown terms of higher or lower order in the governing differential equation, but that certain expectations about the system such as the average modal density may conflict with these results. © 2012 Elsevier Ltd.
Resumo:
We study the transition state of pericyclic reactions at elevated temperature with unbiased ab initio molecular dynamics. We find that the transition state of the intramolecular rearrangements for barbaralane and bullvalene remains aromatic at high temperature despite the significant thermal atomic motions. Structural, magnetic, and electronic properties of the dynamical transition state show the concertedness and aromatic character. Free-energy calculations also support the validity of the transition state theory for the present rearrangement reactions. The calculations demonstrate that cyclic delocalization represents a strong force to synchronize the thermal atomic motions even at high temperatures.
Resumo:
Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for solid, liquid and cluster forms of water. We use a many-body separation of the total energy into its 1-body, 2-body (2B) and beyond-2-body (B2B) components to analyze the deficiencies of two popular DFT approximations. We show how machine-learning methods make this analysis possible for ice structures as well as for water clusters. We find that the crucial energy balance between compact and extended geometries can be distorted by 2B and B2B errors, and that both types of first-principles error are important.
Resumo:
We generalize the standard many-body expansion technique that is used to approximate the total energy of a molecular system to enable the treatment of chemical reactions by quantum chemical techniques. By considering all possible assignments of atoms to monomer units of the many-body expansion and associating suitable weights with each, we construct a potential energy surface that is a smooth function of the nuclear positions. We derive expressions for this reactive many-body expansion energy and describe an algorithm for its evaluation, which scales polynomially with system size, and therefore will make the method feasible for future condensed phase simulations. We demonstrate the accuracy and smoothness of the resulting potential energy surface on a molecular dynamics trajectory of the protonated water hexamer, using the Hartree-Fock method for the many-body term and Møller-Plesset theory for the low order terms of the many-body expansion.
Resumo:
The plastic collapse response of aluminium egg-box panels subjected to out-of-plane compression has been measured and modelled. It is observed that the collapse strength and energy absorption are sensitive to the level of in-plane constraint, with collapse dictated either by plastic buckling or by a travelling plastic knuckle mechanism. Drop weight tests have been performed at speeds of up to 6 m s-1, and an elevation in strength with impact velocity is noted. A 3D finite element shell model is needed in order to reproduce the observed behaviours. Additional calculations using an axisymmetric finite element model give the correct collapse modes but are less accurate than the more sophisticated 3D model. The finite element simulations suggest that the observed velocity dependence of strength is primarily due to strain-rate sensitivity of the aluminium sheet, with material inertia playing a negligible role. Finally, it is shown that the energy absorption capacity of the egg-box material is comparable to that of metallic foams. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
The detailed understanding of the electronic properties of carbon-based materials requires the determination of their electronic structure and more precisely the calculation of their joint density of states (JDOS) and dielectric constant. Low electron energy loss spectroscopy (EELS) provides a continuous spectrum which represents all the excitations of the electrons within the material with energies ranging between zero and about 100 eV. Therefore, EELS is potentially more powerful than conventional optical spectroscopy which has an intrinsic upper information limit of about 6 eV due to absorption of light from the optical components of the system or the ambient. However, when analysing EELS data, the extraction of the single scattered data needed for Kramers Kronig calculations is subject to the deconvolution of the zero loss peak from the raw data. This procedure is particularly critical when attempting to study the near-bandgap region of materials with a bandgap below 1.5 eV. In this paper, we have calculated the electronic properties of three widely studied carbon materials; namely amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C) and C60 fullerite crystal. The JDOS curve starts from zero for energy values below the bandgap and then starts to rise with a rate depending on whether the material has a direct or an indirect bandgap. Extrapolating a fit to the data immediately above the bandgap in the stronger energy loss region was used to get an accurate value for the bandgap energy and to determine whether the bandgap is direct or indirect in character. Particular problems relating to the extraction of the single scattered data for these materials are also addressed. The ta-C and C60 fullerite materials are found to be direct bandgap-like semiconductors having a bandgaps of 2.63 and 1.59eV, respectively. On the other hand, the electronic structure of a-C was unobtainable because it had such a small bandgap that most of the information is contained in the first 1.2 eV of the spectrum, which is a region removed during the zero loss deconvolution.
Resumo:
Non-hydrogenated tetrahedral amorphous carbon (ta-C) has shown superior field emission characteristics. The understanding of the emission mechanism has been hindered by the lack of any directly measured data on the band offsets between ta-C and Si. In this paper results from direct in situ X-ray photoemission spectroscopy (XPS) measurements of the band-offset between ta-C and Si are reported. The measurements were carried out using a filtered cathodic vacuum arc (FCVA) deposition system attached directly to an ultra-high vacuum (UHV) XPS chamber via a load lock chamber. Repeated XPS measurements were carried out after monolayer depositions on in situ cleaned Si substrates. The total film thickness for each set of measurements was approximately 5 nm. Analysis of the data from undoped ta-C on n and p Si show the unexpected result that the conduction band barrier between Si and ta-C remains around 1.0 eV, but that the valence band barrier changes from 0.7 to 0.0 eV. The band line up derived from these barriers suggests that the Fermi level in the ta-C lies 0.3 eV above the valence band on both p and n+Si. The heterojunction barriers when ta-C is doped with nitrogen are also presented. The implications of the heterojunction energy barrier heights for field emission from ta-C are discussed.
Resumo:
The design of a sustainable electricity generation and transmission system is based on the established science of anthropogenic climate change and the realization that depending on imported fossil-fuels is becoming a measure of energy insecurity of supply. A model is proposed which integrates generation fuel mix composition, assignment of plants and optimized power flow, using Portugal as a case study. The result of this co-optimized approach is an overall set of generator types/fuels which increases the diversity of Portuguese electricity supply, lowers its dependency on imported fuels by 14.62% and moves the country towards meeting its regional and international obligations of 31% energy from renewables by 2020 and a 27% reduction in greenhouse gas emissions by 2012, respectively. The quantity and composition of power generation at each bus is specified, with particular focus on quantifying the amount of distributed generation. Based on other works, the resultant, overall distributed capacity penetration of 19.02% of total installed generation is expected to yield positive network benefits. Thus, the model demonstrates that national energy policy and technical deployment can be linked through sustainability and, moreover, that the respective goals may be mutually achieved via holistic, integrated design. ©2009 IEEE.
Resumo:
The control of a wind turbine to the mean wind speed in a gusty wind results in very poor performance. Fluctuations in wind speed with time constants shorter than the response time of a wind turbine results in operation away from optimum design conditions. The effectiveness of a turbine operating in a gusty wind is shown though the use of an unsteady performance coefficient, C e. This performance coefficient is similar in form to a power coefficient. However in order to accommodate unsteady effects, Ce is defined as a ratio of energy extracted to the total wind energy available over a set time period. The turbine's response to real wind data is modelled, in the first instance, by assuming a constant rotational speed operation. It is shown that a significant increase in energy production can be realized by demanding a Tip Speed Ratio above the steady state optimum. The constant speed model is then further extended to incorporate inertial and controller effects. Parameters dictating how well a turbine can track a demand in Tip Speed Ratio have been identified and combined, to form a non-dimensional turbine response parameter. This parameter characterizes a turbine's ability to track a demand in Tip Speed Ratio dependent on an effective gust frequency. A significant increase in energy output of 42% and 245% is illustrated through the application of this over-speed control. This is for the constant rotational speed and Tip Speed Ratio feedback models respectively. The affect of airfoil choice on energy extraction within a gusty wind has been considered. The adaptive control logic developed enables the application of airfoils demonstrating high maximum L/D values but sharp stalling characteristics to be successfully used in a VAWT design.
Resumo:
Quality control is considered from the simulator's perspective through comparative simulation of an ultra energy-efficient building with EE4-DOE2.1E and EnergyPlus. The University of Calgary's Leadership in Energy and Environmental Design Platinum Child Development Centre, with a 66% certified energy cost reduction rating, was the case study building. A Natural Resources Canada incentive program required use of EE4 interface with DOE2.1E simulation engine for energy modelling. As DOE2.1E lacks specific features to simulate advanced systems such as radiant cooling in the CDC, an EnergyPlus model was developed to further evaluate these features. The EE4-DOE2.1E model was used for quality control during development of the base EnergyPlus model and simulation results were compared. Advanced energy systems then added to the EnergyPlus model generated small difference in estimated total annual energy use. The comparative simulation process helped identify the main input errors in the draft EnergyPlus model. The comparative use of less complex simulation programs is recommended for quality control when producing more complex models. © 2009 International Building Performance Simulation Association (IBPSA).
Resumo:
There is potential to extract energy from wastewater in a number of ways, including: kinetic energy using micro-hydro systems, chemical energy through the incineration of sludge, biomass energy from the biogas produced after anaerobic sludge digestion, and thermal energy as heat. This paper considers the last option and asks how much heat could be recovered under UK climatic conditions and can this heat be used effectively by wastewater treatment plants to reduce their carbon footprint? Four wastewater treatment sites in southern England are investigated and the available heat that can be recovered at those sites is quantified. Issues relating to the environmental, economic and practical constraints on how energy can be realistically recovered and utilised are discussed .The results show there is a definite possibility for thermal energy recovery with potential savings at some sites of up to 35,000 tonnes of total long-cycle carbon equivalent (fossil fuel) emissions per year being achievable. The paper also shows that the financial feasibility of three options for using the heat (either for district heating, sludge drying or thermophilic heating in sludge digestion processes) is highly dependant upon the current shadow price of carbon. Without the inclusion of the cost of carbon, the financial feasibility is significantly limited. An environmental constraint for the allowable discharge temperature of effluent after heat-extraction was found to be the major limitation to the amount of energy available for recovery. The paper establishes the true potential of thermal energy recovery from wastewater in English conditions and the economic feasibility of reducing the carbon footprint of wastewater treatment operations using this approach.