31 resultados para Total Hip Prosthesis
em Cambridge University Engineering Department Publications Database
Resumo:
Bone as most of living tissues is able, during its entire lifetime, to adapt its internal microstructure and subsequently its associated mechanical properties to the specific mechanical and physiological environment in a process commonly known as bone remodelling. Bone is therefore continuously renewed and microdamage removed minimizing the risk of fracture. Bone remodelling is controlled by mechanical and metabolical stimuli. In this paper, we introduce a new model of bone remodelling that takes into account both types of influences. The predicted results show a good correspondence with experimental and clinical data. For example, in disuse, bone porosity increases until an equilibrium situation, while, in overloading, decreases unless the damage rate is so high that causes resorption and "stress fracture". This model has been employed to predict bone adaptation in the proximal femur after total hip replacement proving its consistence and good correspondence with well-known clinical experiences.