8 resultados para Torques magnéticos

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robotic manipulanda are extensively used in investigation of the motor control of human arm movements. They permit the application of translational forces to the arm based on its state and can be used to probe issues ranging from mechanisms of neural control to biomechanics. However, most current designs are optimized for studying either motor learning or stiffness. Even fewer include end-point torque control which is important for the simulation of objects and the study of tool use. Here we describe a modular, general purpose, two-dimensional planar manipulandum (vBOT) primarily optimized for dynamic learning paradigms. It employs a carbon fibre arm arranged as a parallelogram which is driven by motors via timing pulleys. The design minimizes the intrinsic dynamics of the manipulandum without active compensation. A novel variant of the design (WristBOT) can apply torques at the handle using an add-on cable drive mechanism. In a second variant (StiffBOT) a more rigid arm can be substituted and zero backlash belts can be used, making the StiffBOT more suitable for the study of stiffness. The three variants can be used with custom built display rigs, mounting, and air tables. We investigated the performance of the vBOT and its variants in terms of effective end-point mass, viscosity and stiffness. Finally we present an object manipulation task using the WristBOT. This demonstrates that subjects can perceive the orientation of the principal axis of an object based on haptic feedback arising from its rotational dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adopting square wave excitation to drive induction motors (IMs) can substantially reduce inverter switching losses. However, the low-order time harmonics inherent in the output voltage generates parasitic torques that degrade motor performance and reduce efficiency. In this paper, a novel harmonic elimination modulation technique with full voltage control is studied as an interesting and alternative means of operating small (<1kW) IM drives efficiently. A fully verified harmonic elimination scheme, which removes the 5th, 7th, 11th, 13th and 17 th time harmonics, was implemented and applied to an IGBT driven IM. The power losses incurred in the inverter and the IM as a result of the switching scheme have been determined. © 2008 Crown copyright.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the field of motor control, two hypotheses have been controversial: whether the brain acquires internal models that generate accurate motor commands, or whether the brain avoids this by using the viscoelasticity of musculoskeletal system. Recent observations on relatively low stiffness during trained movements support the existence of internal models. However, no study has revealed the decrease in viscoelasticity associated with learning that would imply improvement of internal models as well as synergy between the two hypothetical mechanisms. Previously observed decreases in electromyogram (EMG) might have other explanations, such as trajectory modifications that reduce joint torques. To circumvent such complications, we required strict trajectory control and examined only successful trials having identical trajectory and torque profiles. Subjects were asked to perform a hand movement in unison with a target moving along a specified and unusual trajectory, with shoulder and elbow in the horizontal plane at the shoulder level. To evaluate joint viscoelasticity during the learning of this movement, we proposed an index of muscle co-contraction around the joint (IMCJ). The IMCJ was defined as the summation of the absolute values of antagonistic muscle torques around the joint and computed from the linear relation between surface EMG and joint torque. The IMCJ during isometric contraction, as well as during movements, was confirmed to correlate well with joint stiffness estimated using the conventional method, i.e., applying mechanical perturbations. Accordingly, the IMCJ during the learning of the movement was computed for each joint of each trial using estimated EMG-torque relationship. At the same time, the performance error for each trial was specified as the root mean square of the distance between the target and hand at each time step over the entire trajectory. The time-series data of IMCJ and performance error were decomposed into long-term components that showed decreases in IMCJ in accordance with learning with little change in the trajectory and short-term interactions between the IMCJ and performance error. A cross-correlation analysis and impulse responses both suggested that higher IMCJs follow poor performances, and lower IMCJs follow good performances within a few successive trials. Our results support the hypothesis that viscoelasticity contributes more when internal models are inaccurate, while internal models contribute more after the completion of learning. It is demonstrated that the CNS regulates viscoelasticity on a short- and long-term basis depending on performance error and finally acquires smooth and accurate movements while maintaining stability during the entire learning process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study compared the mechanisms of adaptation to stable and unstable dynamics from the perspective of changes in joint mechanics. Subjects were instructed to make point to point movements in force fields generated by a robotic manipulandum which interacted with the arm in either a stable or an unstable manner. After subjects adjusted to the initial disturbing effects of the force fields they were able to produce normal straight movements to the target. In the case of the stable interaction, subjects modified the joint torques in order to appropriately compensate for the force field. No change in joint torque or endpoint force was required or observed in the case of the unstable interaction. After adaptation, the endpoint stiffness of the arm was measured by applying displacements to the hand in eight different directions midway through the movements. This was compared to the stiffness measured similarly during movements in a null force field. After adaptation, the endpoint stiffness under both the stable and unstable dynamics was modified relative to the null field. Adaptation to unstable dynamics was achieved by selective modification of endpoint stiffness in the direction of the instability. To investigate whether the change in endpoint stiffness could be accounted for by change in joint torque or endpoint force, we estimated the change in stiffness on each trial based on the change in joint torque relative to the null field. For stable dynamics the change in endpoint stiffness was accurately predicted. However, for unstable dynamics the change in endpoint stiffness could not be reproduced. In fact, the predicted endpoint stiffness was similar to that in the null force field. Thus, the change in endpoint stiffness seen after adaptation to stable dynamics was directly related to changes in net joint torque necessary to compensate for the dynamics in contrast to adaptation to unstable dynamics, where a selective change in endpoint stiffness occurred without any modification of net joint torque.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real-time acquisition of EMG during functional MRI (fMRI) provides a novel method of controlling motor experiments in the scanner using feedback of EMG. Because of the redundancy in the human muscle system, this is not possible from recordings of joint torque and kinematics alone, because these provide no information about individual muscle activation. This is particularly critical during brain imaging because brain activations are not only related to joint torques and kinematics but are also related to individual muscle activation. However, EMG collected during imaging is corrupted by large artifacts induced by the varying magnetic fields and radio frequency (RF) pulses in the scanner. Methods proposed in literature for artifact removal are complex, computationally expensive, and difficult to implement for real-time noise removal. We describe an acquisition system and algorithm that enables real-time acquisition for the first time. The algorithm removes particular frequencies from the EMG spectrum in which the noise is concentrated. Although this decreases the power content of the EMG, this method provides excellent estimates of EMG with good resolution. Comparisons show that the cleaned EMG obtained with the algorithm is, like actual EMG, very well correlated with joint torque and can thus be used for real-time visual feedback during functional studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Work presented in this paper studies the potential of employing inerters -a novel mechanical device used successfully in racing cars- in active suspension configurations with the aim to enhance railway vehicle system performance. The particular element of research in this paper concerns railway wheelset lateral stability control. Controlled torques are applied to the wheelsets using the concept of absolute stiffness. The effects of a reduced set of arbitrary passive structures using springs, dampers and inerters integrated to the active solution are discussed. A multi-objective optimisation problem is defined for tuning the parameters of the proposed configurations. Finally, time domain simulations are assessed for the railway vehicle while negotiating a curved track. A simplification of the design problem for stability is attained with the integration of inerters to the active solutions. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper considers the problem of autonomous synchronization of attitudes in a swarm of spacecraft. Building upon our recent results on consensus on manifolds, we model the spacecraft as particles on SO(3) and drive these particles to a common point in SO(3). Unlike the Euler angle or quaternion descriptions, this model suffers no singularities nor double-points. Our approach is fully cooperative and autonomous: we use no leader nor external reference. We present two types of control laws, in terms of applied control torques, that globally drive the swarm towards attitude synchronization: one that requires tree-like or all-to-all inter-satellite communication (most efficient) and one that works with nearly arbitrary communication (most robust).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been an increasing interest in the use of mechanical dynamics, (e.g., assive, Elastic, And viscous dynamics) for energy efficient and agile control of robotic systems. Despite the impressive demonstrations of behavioural performance, The mechanical dynamics of this class of robotic systems is still very limited as compared to those of biological systems. For example, Passive dynamic walkers are not capable of generating joint torques to compensate for disturbances from complex environments. In order to tackle such a discrepancy between biological and artificial systems, We present the concept and design of an adaptive clutch mechanism that discretely covers the full-range of dynamics. As a result, The system is capable of a large variety of joint operations, including dynamic switching among passive, actuated and rigid modes. The main innovation of this paper is the framework and algorithm developed for controlling the trajectory of such joint. We present different control strategies that exploit passive dynamics. Simulation results demonstrate a significant improvement in motion control with respect to the speed of motion and energy efficiency. The actuator is implemented in a simple pendulum platform to quantitatively evaluate this novel approach.