17 resultados para Time-Fractional Diffusion-Wave Problem

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a review of important results concerning the Geometrical Theory of Diffraction and Geometrical Optics. It also reviews the properties of the existing solution for the problem of diffraction of a time harmonic plane wave by a half-plane. New mathematical expressions are derived for the wave fields involved in the problem of diffraction of a time harmonic plane wave by a quarter-plane, including the secondary radiated waves. This leads to a precise representation of the diffraction coefficient describing the diffraction occurring at the corner of the quarter-plane. Our results for the secondary radiated waves are an important step towards finding a formula giving the corner diffraction coefficient everywhere. © 2012 The authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a new, compact derivation of state-space formulae for the so-called discretisation-based solution of the H∞ sampled-data control problem. Our approach is based on the established technique of continuous time-lifting, which is used to isometrically map the continuous-time, linear, periodically time-varying, sampled-data problem to a discretetime, linear, time-invariant problem. State-space formulae are derived for the equivalent, discrete-time problem by solving a set of two-point, boundary-value problems. The formulae accommodate a direct feed-through term from the disturbance inputs to the controlled outputs of the original plant and are simple, requiring the computation of only a single matrix exponential. It is also shown that the resultant formulae can be easily re-structured to give a numerically robust algorithm for computing the state-space matrices. © 1997 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

D Liang from Cambridge University explains the shallow water equations and their applications to the dam-break and other steep-fronted flow modeling. They assume that the horizontal scale of the flow is much greater than the vertical scale, which means the flow is restricted within a thin layer, thus the vertical momentum is insignificant and the pressure distribution is hydrostatic. The left hand sides of the two momentum equations represent the acceleration of the fluid particle in the horizontal plane. If the fluid acceleration is ignored, then the two momentum equations are simplified into the so-called diffusion wave equations. In contrast to the SWEs approach, it is much less convenient to model floods with the Navier-Stokes equations. In conventional computational fluid dynamics (CFD), cumbersome treatments are needed to accurately capture the shape of the free surface. The SWEs are derived using the assumptions of small vertical velocity component, smooth water surface, gradual variation and hydrostatic pressure distribution.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The scattering of sound from a point source by a Rankine vortex is investigated numerically by solving the Euler equations with the novel high-resolution CABARET method. For several Mach numbers of the vortex, the time-average amplitudes of the scattered field obtained from the numerical modeling are compared with the theoretical scaling laws' predictions. Copyright © 2009 by Sergey Karabasov.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a pseudo-time-step method to calculate a (vector) Green function for the adjoint linearised Euler equations as a scattering problem in the frequency domain, for use as a jet-noise propagation prediction tool. A method of selecting the acoustics-related solution in a truncated spatial domain while suppressing any possible shear-layer-type instability is presented. Numerical tests for 3-D axisymmetrical parallel mean flows against semi-analytical reference solutions indicate that the new iterative algorithm is capable of producing accurate solutions with modest computational requirements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A case study of an aircraft engine manufacturer is used to analyze the effects of management levers on the lead time and design errors generated in an iteration-intensive concurrent engineering process. The levers considered are amount of design-space exploration iteration, degree of process concurrency, and timing of design reviews. Simulation is used to show how the ideal combination of these levers can vary with changes in design problem complexity, which can increase, for instance, when novel technology is incorporated in a design. Results confirm that it is important to consider multiple iteration-influencing factors and their interdependencies to understand concurrent processes, because the factors can interact with confounding effects. The article also demonstrates a new approach to derive a system dynamics model from a process task network. The new approach could be applied to analyze other concurrent engineering scenarios. © The Author(s) 2012.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accurate prediction of time-changing covariances is an important problem in the modeling of multivariate financial data. However, some of the most popular models suffer from a) overfitting problems and multiple local optima, b) failure to capture shifts in market conditions and c) large computational costs. To address these problems we introduce a novel dynamic model for time-changing covariances. Over-fitting and local optima are avoided by following a Bayesian approach instead of computing point estimates. Changes in market conditions are captured by assuming a diffusion process in parameter values, and finally computationally efficient and scalable inference is performed using particle filters. Experiments with financial data show excellent performance of the proposed method with respect to current standard models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125-165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of surfactant on the breakup of a prestretched bubble in a quiescent viscous surrounding is studied by a combination of direct numerical simulation and the solution of a long-wave asymptotic model. The direct numerical simulations describe the evolution toward breakup of an inviscid bubble, while the effects of small but non-zero interior viscosity are readily included in the long-wave model for a fluid thread in the Stokes flow limit. The direct numerical simulations use a specific but realizable and representative initial bubble shape to compare the evolution toward breakup of a clean or surfactant-free bubble and a bubble that is coated with insoluble surfactant. A distinguishing feature of the evolution in the presence of surfactant is the interruption of bubble breakup by formation of a slender quasi-steady thread of the interior fluid. This forms because the decrease in surface area causes a decrease in the surface tension and capillary pressure, until at a small but non-zero radius, equilibrium occurs between the capillary pressure and interior fluid pressure. The long-wave asymptotic model, for a thread with periodic boundary conditions, explains the principal mechanism of the slender thread's formation and confirms, for example, the relatively minor role played by the Marangoni stress. The large-time evolution of the slender thread and the precise location of its breakup are, however, influenced by effects such as the Marangoni stress and surface diffusion of surfactant. © 2008 Cambridge University Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use reversible jump Markov chain Monte Carlo (MCMC) methods to address the problem of model order uncertainty in autoregressive (AR) time series within a Bayesian framework. Efficient model jumping is achieved by proposing model space moves from the full conditional density for the AR parameters, which is obtained analytically. This is compared with an alternative method, for which the moves are cheaper to compute, in which proposals are made only for new parameters in each move. Results are presented for both synthetic and audio time series.