13 resultados para Thrust curve

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Phase Response Curve (PRC) has proven a useful tool for the reduction of complex oscillator models. It is also an information often experimentally available to the biologist. This paper introduces a numerical tool based on the sensitivity analysis of the PRC to adapt initial model parameters in order to match a particular PRC shape. We illustrate the approach on a simple biochemical model of circadian oscillator. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses elementary control strategies to control the phase of an oscillator. Both feedforward and feedback (P and PI) control laws are designed based on the phase response curve (PRC) calculated from the linearized model. The performance is evaluated on a popular model of circadian oscillations. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circumstances are investigated under which high peak acceleration can occur in the internal parts of a system when subjected to impulsive driving on the outside. Previous work using a coupled beam model has highlighted the importance of veering pairs of modes. Such a veering pair can be approximated by a lumped system with two degrees of freedom. The worst case of acceleration amplification is shown to occur when the two oscillators are tuned to the same frequency, and for this case closed-form expressions are derived to show the parameter dependence of the acceleration ratio on the mass ratio and coupling strength. Sensitivity analysis of the eigenvalues and eigenvectors indicates that mass ratio is the most sensitive parameter for altering the veering behaviour in an undamped system. Non-proportional damping is also shown to have a strong influence on the veering behaviour. The study gives design guidelines to allow permissible acceleration levels to be achieved by the choice of the effective mass and damping of the indirectly driven subsystem relative to the directly driven subsystem. © 2013 Elsevier Ltd.