124 resultados para Three-dimensional characteristics
em Cambridge University Engineering Department Publications Database
Resumo:
The desire to design more efficient transport aircraft has led to many different attempts to minimize drag. One approach is the use of three-dimensional shock control bumps, which have gained popularity in the research community as simple, efficient and robust devices capable of reducing the wave drag of transonic wings. This paper presents a computational study of the performance of three-dimensional bumps, relating key bump design variables to the overall wing aerodynamic performance. An efficient parameterization scheme allows three-dimensional bumps to be directly compared to two-dimensional designs, indicating that two-dimensional bumps are capable of greater design point aerodynamic performance in the transonic regime. An advantage of three-dimensional bumps lies in the production of streamwise vortices, such that, while two-dimensional bumps are capable of superior performance near the design point, three-dimensional bumps are capable of breakingup regions of separated flow at high Mach numbers, suggesting improvement in terms of buffet margin. A range of bump designs are developed that exhibit a tradeoff between design point aerodynamic efficiency and improvementinbuffet margin, indicating the potential for bespoke designs to be generated for different sections of a wing based on its flow characteristics. Copyright © 2012 by Jeremy Eastwood and Jerome Jarrett.
Resumo:
The authors report the growth of carbon nanowalls in freestanding, three-dimensional aggregates by microwave plasma-enhanced chemical vapor deposition. Carbon nanowalls extrude from plasma sites into three-dimensional space. The growth is catalyst-free and not limited by nucleating surfaces. The growth mechanism is discussed and compared with similar carbon nanomaterials. High surface area of as-grown carbon nanowalls indicates a potential for electrochemical applications. Field emission measurements show a low field turn-on and long-term stability. The results establish a scalable production method and possible applications using field emission or high surface area. © 2007 American Institute of Physics.
Resumo:
We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume.We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm's complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0:01' for a 2:66' cone angle produces acceptable reconstruction quality. © 2009 Optical Society of America.