127 resultados para Three-dimensional analysis
em Cambridge University Engineering Department Publications Database
Resumo:
An experimental investigation into the response of transonic SBLIs to periodic down-stream pressure perturbations in a parallel walled duct has been conducted. Tests have been carried out with a shock strength of M ∞ = 1.5 for pressure perturbation frequencies in the range 16-90 Hz. Analysis of the steady interaction at M∞ = 1.5 has also been made. The principle measurement techniques were high speed schlieren photography and laser Doppler anemometry. The structure of the steady SBLI was found to be highly three-dimensional, with large corner flows and sidewall SBLIs. These aspects are thought to influence the upstream transmission of pressure information through the interaction by affecting the post-shock flow field, including the extent of regions of secondary supersonic flow. At low frequency, the dynamics of shock motion can be predicted using an inviscid analytical model. At increased frequencies, viscous effects become significant and the shock exhibits unexpected dynamic behaviour, due to a phase lag between the upstream transmission of pressure information in the core flow and in the viscous boundary layers. Flow control in the form of micro-vane vortex generators was found to have a small impact on shock dynamics, due to the effect it had on the post-shock flow field outside the viscous boundary layer region. The relationship between inviscid and viscous effects is developed and potential destabilising mechanisms for SBLIs in practical applications are suggested. Copyright © 2009 by Paul Bruce and Holger Babinsky.
Resumo:
The fluorine redistribution during partial solid-phase-epitaxial-regrowth at 650°C of a preamorphized Si substrate implanted by F was investigated by atom probe tomography (APT), transmission electron microscopy, and secondary ions mass spectrometry. Three-dimensional spatial distribution of F obtained by APT provides a direct observation of F-rich clusters with a diameter of less than 1.5 nm. Density variation compatible with cavities and F-rich molecular ions in correspondence of clusters are in accordance with cavities filled by SiF 4 molecules. Their presence only in crystalline Si while they are not revealed by statistical analysis in amorphous suggests that they form at the amorphous/crystal interface. © 2012 American Institute of Physics.
Resumo:
Previous studies of transonic shock control bumps have often been either numerical or experimental. Comparisons between the two have been hampered by the limitations of either approach. The present work aims to bridge the gap between computational fluid dynamics and experiment by planning a joint approach from the outset. This enables high-quality validation data to be produced and ensures that the conclusions of either aspect of the study are directly relevant to the application. Experiments conducted with bumps mounted on the floor of a blowdown tunnel were modified to include an additional postshock adverse pressure gradient through the use of a diffuser as well as introducing boundary-layer suction ahead of the test section to enable the in-flow boundary layer to be manipulated. This has the advantage of being an inexpensive and highly repeatable method. Computations were performed on a standard airfoil model, with the flight conditions as free parameters. The experimental and computational setups were then tuned to produce baseline conditions that agree well, enabling confidence that the experimental conclusions are relevant. The methods are then applied to two different shock control bumps: a smoothly contoured bump, representative of previous studies, and a novel extended geometry featuring a continuously widening tail, which spans the wind-tunnel width at the rear of the bump. Comparison between the computational and experimental results for the contour bump showed good agreement both with respect to the flow structures and quantitative analysis of the boundary-layer parameters. It was seen that combining the experimental and numerical data could provide valuable insight into the flow physics, which would not generally be possible for a one-sided approach. The experiments and computational fluid dynamics were also seen to agree well for the extended bump geometry, providing evidence that, even though thebumpinteracts directly with the wind-tunnel walls, it was still possible to observe the key flow physics. The joint approach is thus suitable even for wider bump geometries. Copyright © 2013 by S. P. Colliss, H. Babinsky, K. Nubler, and T. Lutz. Published by the American Institute of Aeronautics and Astronautics, Inc.