5 resultados para Three body
em Cambridge University Engineering Department Publications Database
Resumo:
We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.
Resumo:
We present a moving mesh method suitable for solving two-dimensional and axisymmetric three-liquid flows with triple junction points. This method employs a body-fitted unstructured mesh where the interfaces between liquids are lines of the mesh system, and the triple junction points (if exist) are mesh nodes. To enhance the accuracy and the efficiency of the method, the mesh is constantly adapted to the evolution of the interfaces by refining and coarsening the mesh locally; dynamic boundary conditions on interfaces, in particular the triple points, are therefore incorporated naturally and accurately in a Finite- Element formulation. In order to allow pressure discontinuity across interfaces, double-values of pressure are necessary for interface nodes and triple-values of pressure on triple junction points. The resulting non-linear system of mass and momentum conservation is then solved by an Uzawa method, with the zero resultant condition on triple points reinforced at each time step. The method is used to investigate the rising of a liquid drop with an attached bubble in a lighter liquid.